Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Fluid Dynamic and Acoustic Optimization Methodology of a Motorbike Intake Airbox Using Multilevel Numerical CFD Models and Experimental Validation Tests

2013-09-08
2013-24-0070
In this work a multilevel CFD analysis have been applied for the design of an intake air-box with improved characteristics of noise reduction and fluid dynamic response. The approaches developed and applied for the optimization process range from the 1D to fully 3D CFD simulation, exploring hybrid approaches based on the integration of a 1D model with quasi-3D and 3D tools. In particular, the quasi-3D strategy is exploited to investigate several configurations, tailoring the best trade-off between noise abatement at frequencies below 1000 Hz and optimization of engine performances. Once the best configuration has been defined, the 1D-3D approach has been adopted to confirm the prediction carried out by means of the simplified approach, studying also the impact of the new configuration on the engine performances.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

Multi-Objective Optimization of the Timing System on a Small 2-Wheeler Engine (SOHC): Methodology and Case Study

2014-11-11
2014-32-0055
In recent years the 2-wheelers engines companies have been focused on increasing the overall engine efficiency, that can be achieved amongst other by engine down-speeding, engine down-sizing and by reducing the frictions; however, to maintain or improve vehicle performance, it is necessary to provide a corresponding increase in specific power. In accordance with these trends, the studied approaches and methodologies have been exploited, during the development of the new Piaggio small scooter engine. In this work a multi-objective analysis has been applied to the valve train system design, in order to optimize the engine performance in terms of friction reduction, power curve and timing system response. Along with this optimization methodology, a robust design has been studied to make the peak cranking compression pressure insensitive to the engine starting device working.
X