Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Development of an In-Hub Motors Hybrid Vehicle for Military Applications

2010-04-12
2010-01-0659
The paper focuses on the advantages of the diesel electric traction applied to military vehicles. In recent years electric cars developed mainly to reduce the dependence on fossil fuels and cut down the emissions. The reduction of fuel consumption, important for civil vehicles above all to reduce emissions and to lower costs, is important also for the military in order to increase vehicle autonomy. In addition, the interest for hybrid electric military vehicles is linked with vehicle packaging flexibility, on board power generation and stealth potential related to their abilities of silent movement. Among many possible layouts the optimum is considered to be hub mounted drive motors in each wheel [ 1 ]. This study shows the development of a demonstrator of an hybrid electric 4×4 military vehicle. It was carried out for a future extension of the technology to a 8×8 armoured vehicle.
Technical Paper

H-ergo: Electric-Hydrogen Powered Personal Mobility Concept Vehicle

2010-04-12
2010-01-0031
H-ergo, a concept of light electric vehicle devoted to personal mobility, will here be presented. H-ergo is a low-noise, user-friendly, zero-emission vehicle, with a pleasant style. Its main features include high payload/vehicle mass ratio, electric energy supplied either by batteries or by fuel cell, ergonomic style in order to transport a driver or a person whit mobility problems, chassis design to minimize cost of production, variable wheelbase (through electric actuator). The paper presents the main ideas on which the vehicle design was based and summarizes the most important results obtained.
Journal Article

A Reverse-Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

2020-06-30
2020-37-0021
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant powertrain data required for fuel consumption-oriented hybrid electric vehicle (HEV) modelling. The estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency, gearshift thresholds, torque converter performance diagrams, engine fuel consumption map and front/rear hydraulic brake torque distribution. This activity provides a list of dedicated experimental tests, to be carried out on road or on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm.
X