Refine Your Search

Topic

Author

Search Results

Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

H-ergo: Electric-Hydrogen Powered Personal Mobility Concept Vehicle

2010-04-12
2010-01-0031
H-ergo, a concept of light electric vehicle devoted to personal mobility, will here be presented. H-ergo is a low-noise, user-friendly, zero-emission vehicle, with a pleasant style. Its main features include high payload/vehicle mass ratio, electric energy supplied either by batteries or by fuel cell, ergonomic style in order to transport a driver or a person whit mobility problems, chassis design to minimize cost of production, variable wheelbase (through electric actuator). The paper presents the main ideas on which the vehicle design was based and summarizes the most important results obtained.
Technical Paper

NEEXT : New Electric Experience For Traction

2010-04-12
2010-01-0034
Electric scooters are suited to mobility in zones with environmental traffic limitations, and particularly for city centers with very poor room for parking. Aim of this paper is the illustration of the performance that can be obtained from a purposely designed electric scooter. The features of the main components of the scooter driveline: battery package, converter, motor and control will be described.
Technical Paper

The Impact of WLTP on the Official Fuel Consumption and Electric Range of Plug-in Hybrid Electric Vehicles in Europe

2017-09-04
2017-24-0133
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
Technical Paper

Ground Testing of the ETF Unmanned Airship Technology Demonstrator

2011-10-18
2011-01-2589
This paper deals with the ground testing of the technological demonstrator of the innovative remotely controlled ETF airship1. The testing activities are intended to validate the flight control system of the ETF, which is based on the thrust vectoring technology and represents one of the major innovations of the ETF design, together with the airship architecture. A research team of the Aeronautical and Space Department of the Polytechnic of Turin, in collaboration with Nautilus, a small Italian private company, has been working since a few years on the ETF (Elettra Twin Flyers). This airship is remotely-piloted, with high maneuverability capabilities and good operative features also in adverse atmospheric conditions2. The Nautilus new concept airship features architecture and appropriate command system, which should enable the vehicle to maneuver in forward, backward and sideward flight and hovering with any heading, both in normal and severe wind conditions.
Technical Paper

Energy Storage: Regenerative Fuel Cell Systems for Space Exploration

2011-10-18
2011-01-2624
Future exploration missions, including human missions to the Moon and Mars, are expected to have increasingly demanding operational requirements. Generating electrical power, and also maintaining a specific thermal environment, are both critical capabilities for any mission. In the case of exploration, both a wide range of mission types (robotic, human, ISRU etc.) and a variety of environments exist: from interplanetary space, to the shadow of a lunar crater, to the attenuated and red-shifted lighting on the Martian surface, power requirements must be met. This objective could be met with different technologies. The choice is dictated by the operating conditions and the different types of mission. TAS-I is historically mainly involved in missions related to the space exploration with the presence of astronauts. A typical example is the exploration of the Moon with the installation on the Moon surface of a base inclusive of pressurized habitats and rovers.
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

2013-04-08
2013-01-0964
Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

Effect of Temperature Distribution on the Predicted Cell Lifetimes for a Plug-In Hybrid Electric Vehicle Battery Pack

2022-03-29
2022-01-0712
Monitoring and preserving state-of-health of high-voltage battery packs in electrified road vehicles currently represents an open and growing research topic. When predicting high-voltage battery lifetime, most current literature assumes a uniform temperature distribution among the different cells of the pack. Nevertheless, temperature has been demonstrated having a key impact on cell lifetime, and different cells of the same battery pack typically exhibit different temperature profiles over time, e.g. due to their position within the pack. Following these considerations, this paper aims at assessing the effect of temperature distribution on the predicted lifetime of cells belonging to the same battery pack. To this end, a throughput-based numerical cell ageing model is firstly selected due to its reasonable compromise between accuracy and computational efficiency.
Technical Paper

Effects of Timing and Odd/Even Number of Teeth on Noise Generation of Gerotor Lubricating Pumps for IC Engines

2000-09-11
2000-01-2630
The paper presents experimental and theoretical investigations on a shaft mounted gerotor lubricating pump aimed at reducing radiated noise at high engine speed. Effects of noise generation identified as main sources are the fluid borne noise (FBN) that originates in unsteady flow and related pressure fluctuations and structure borne noise (SBN) as a result of pressure transients occurring internally, which cause vibrations of the pump case. To clarify the onset of large delivery pressure fluctuations detected at high pump speed (in excess of 4000 rpm), and validate simulation results (AMESim environment), experimental and theoretical studies have been performed.
Technical Paper

Supercar Hybridization: A Synergic Path to Reduce Fuel Consumption and Improve Performance

2018-05-30
2018-37-0009
The trend towards powertrain electrification is expected to grow significantly in the next future also for super-cars. The aim of this paper is therefore to assess, through numerical simulation, the impact on both fuel economy and performance of different 48 Volt mild hybrid architectures for a high-performance sport car featuring a Turbocharged Direct Injection Spark Ignition (TDISI) engine. In particular the hybrid functionalities of both a P0 (Belt Alternator Starter - BAS) and a P2 (Flywheel Alternator Starter - FAS) architecture were investigated and optimized for this kind of application through a global optimization algorithm. The analysis pointed out CO2 emission reductions potential of about 6% and 25% on NEDC, 7% and 28% on WLTC for P0 and P2 respectively. From the performance perspective, a 10% reduction in the time-to-torque was highlighted for both architectures in a load step maneuver at 2000 RPM constant speed.
Technical Paper

Nonlinear Slender Beam-Wise Schemes for Structural Behavior of Flexible UAS Wings

2015-09-15
2015-01-2462
The innovative highly flexible wings made of extremely light structures, yet still capable of carrying a considerable amount of non- structural weights, requires significant effort in structural simulations. The complexity involved in such design demands for simplified mathematical tools based on appropriate nonlinear structural schemes combined with reduced order models capable of predicting accurately their aero-structural behaviour. The model presented in this paper is based on a consistent nonlinear beam-wise scheme, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are expanded up to the third order and can be used to explore the effect of static deflection imposed by external trim, the effect of gust loads and the one of nonlinear aerodynamic stall.
Journal Article

Design and Modelling of the Powertrain of a Hybrid Fuel Cell Electric Vehicle

2021-04-06
2021-01-0734
This paper presents a Fuel Cell Electric Vehicle (FCEV) powertrain development and optimization, aiming to minimize hydrogen consumption. The vehicle is a prototype that run at the Shell Eco-marathon race and its powertrain is composed by a PEM fuel cell, supercapacitors and a DC electric motor. The supercapacitors serve as an energy buffer to satisfy the load peaks requested by the electric motor, allowing a smoother (and closer to a stationary application) working condition for the fuel cell. Thus, the fuel cell can achieve higher efficiency rates and the fuel consumption is minimized. Several models of the powertrain were developed using MATLAB-Simulink and then experimentally validated in laboratory and on the track. The proposed models allow to evaluate two main arrangements between fuel cell and supercapacitors: 1) through a DC/DC converter that sets the FC current to a desired value; 2) using a direct parallel connection between fuel cell and supercapacitors.
Technical Paper

Improving the Feasibility of Electrified Heavy-Duty Truck Fleets with Dynamic Wireless Power Transfer

2023-08-28
2023-24-0161
This study assesses the capabilities of dynamic wireless power transfer with respect to range extension and payload capacity of heavy-duty trucks. Currently, a strong push towards tailpipe CO2 emissions abatement in the heavy-duty transport sector by policymakers is driving the development of battery electric trucks. Yet, battery-electric heavy-duty trucks require large battery packs which may reduce the payload capacity and increase dwell time at charging stations, negatively affecting their acceptance among fleet operators. By investigating various levels of development of wireless charging technology and exploring various deployment scenarios for an electrified highway lane, the potential for a more efficient and environmentally friendly battery sizing was explored.
Technical Paper

LCA and LCC of a Li-ion Battery Pack for Automotive Application

2023-08-28
2023-24-0170
Lithium Ion (Li-ion) batteries have emerged as the dominant technology for electric mobility due to their performance, stability, and long cycle life. Nevertheless, there are emerging environmental and economic issues from Li-ion batteries related to depleting critical resources and their potential shortage. This paper focuses on developing the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of a generic Li-ion battery pack with a Nickel-Manganese-Cobalt (NMC) cathode chemistry, being the most used, and a capacity of 95 kWh as an average between different carmakers. The LCA and LCC include all the relevant phases of the life cycle of the product. The costs related to the LCC assessment have been taken as secondary data. Lastly, the same system boundary has been chosen both for the LCA and LCC.
Technical Paper

Development of a High-Voltage Battery Pack Thermal Model at Vehicle Level for Plug-in Hybrid Applications

2022-06-14
2022-37-0023
The ongoing global demand for greater energy efficiency plays an essential role in the automotive industry, as the focus is moving from ICEs to hybrid (HEVs) and electric (EVs) vehicles. New virtual methodologies are necessary to reduce the development effort of these technologies. In this context, the thermal management of the vehicle high voltage battery pack is becoming increasingly important, with significant impact on the vehicle’s range in different environmental scenarios. In this paper, an advanced method is proposed to compute 3D temperature distribution of the cells of a high voltage battery pack for Plug-in Hybrid (PHEV) or full electric (EV) applications. The thermal FE model of a complete PHEV vehicle was integrated with an electrical NTG equivalent circuit model of the HV battery to compute the heat loads of the cells.
X