Refine Your Search

Topic

Author

Search Results

Journal Article

Fuel Cell Auxiliary Power Units for Heavy Duty Truck Anti-Idling

2013-09-24
2013-01-2470
The DESTA project, funded by the European Commission under the FCH JU program, is a collaborative effort of AVL List GmbH, Eberspächer Climate Control Systems, Topsoe Fuel Cell (TOFC), Volvo and Forschungszentrum Jülich to bring fuel cell based auxiliary power units (APU) for heavy duty truck idling elimination closer to the market. Within this project Solid Oxide Fuel Cell (SOFC) technology is used, which enables the use of conventional diesel fuel. During the project the technology is significantly optimized and around 10 APU systems are thoroughly tested. In 2014 a vehicle demonstration on board of a US type Volvo class 8 truck will be performed.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Journal Article

A Fuel Cell Based Propulsion System for General Aviation Aircraft: The ENFICA-FC Experience

2011-10-18
2011-01-2522
The hydrogen and fuel cell power based technologies that are rapidly emerging can be exploited to start a new generation of propulsion systems for light aircraft and small commuter aircraft. Different studies were undertaken in recent years on fuel cells in aeronautics. Boeing Research & Technology Centre (Madrid) successfully flew its converted Super Dimona in 2008 relying on a fuel cell based system. DLR flew in July 2009 with the motor-glider Antares powered by fuel cells. The goal of the ENFICA-FC project (ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells - European Commission funded project coordinated by Prof. Giulio Romeo) was to develop and validate new concepts of fuel cell based power systems for more/all electric aircrafts belonging to a “inter-city” segment of the market.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

2020-04-14
2020-01-0857
Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Technical Paper

Steering Feedback Torque Definition and Generation in a Steer by Wire System

2008-04-14
2008-01-0498
Steer by wire (SbW) system is examined, considering the positive effects of the lack of direct mechanical connection between steering wheel and rack. SbW system's steering wheel has to generate a resistant torque which adds to the friction one. Such torque must be felt as natural by the average driver and carry information about vehicle dynamic condition. System prototype is obtained from a classical steering system. Steering wheel is linked to a brushless 12V DC current electric motor designed to develop resistance torque, after steering column is removed, triple stadium planetary gear is necessary to increase the torque output. A hardware in the loop test bench is realized in order to test feedback torque generation and steering wheel efficiency influence on vehicle behaviour. Steering wheel is fixed to the bench and its rotation acquired by an optic encoder. Steering wheel angle is used as input for a ten degrees of freedom vehicle model through an acquisition data board.
Technical Paper

Fuel Cell Size and Weight Reduction Due to Innovative Metallic Bipolar Plates: Technical Process Details and Improvements

2009-04-20
2009-01-1009
In the automotive field the application of electric propulsion systems based on fuel cells requires a constant and continuing research of several optimized solutions, especially in terms of weight and size reduction. These key-factors tend to influence significantly the performance of the vehicle where the system is installed on. The main objective of the paper is to obtain breakthroughs in designing, manufacturing and assembling a fuel cell stack through the development of innovative metallic bipolar plates, that allows to set up high power density stacks, by lowering sensibly weight and size. The research activity carried out by the aforementioned authors is focused on the choice of suitable materials and the development of optimized tools, processes and techniques, in order to be able to move rapidly towards thinner bipolar plates, with new compact geometries that ensure the required stack output power.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

2017-09-19
2017-01-2061
An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

PEM Fuel Cell Performance under Pre-Compression of Electrode: A Multidisciplinary, Integrated and Advanced Calculus Approach

2011-04-12
2011-01-1175
Finite element methodologies are widely used in the attempt to minimize the expense for testing and mock-ups. The same approach could be extensively used in predicting PEMFC (Proton Exchange Membrane Fuel Cell) performance, considering all of the aspects related to this modern and complex technology, from electric to thermal and structural, to fluid-dynamics behavior. The present work focuses on the clamping pressure of the stack and its influence on the electro-chemical performance of the fuel cell. The main objective is to evaluate PEMFC performance related to several clamping configurations defined by the user when assembling the entire stack. The concept is to simulate the behavior of more deformable components and predict their influence on the overall performance.
Technical Paper

A PEM Fuel Cell Laminar and Turbulent Models Comparison, Aiming at Identifying Small-Scale Plate Channel Phenomena: A Mesh Independent Configuration

2011-04-12
2011-01-1177
Computational Fluid Dynamics is a powerful instrument for PEM fuel cell systems development, testing and optimization. Considering the complication due to the multiple physical phenomena involved in the cell's operations, a good understanding of the micro-scale fluidic behavior in boundary layers is recommended: pressure drop along the reactants gas channels and the cooling channels has a sensible effect on parasite load in fuel cell systems (i.e. the power absorbed by the pump supplying the gases), as well as an important role in thermal transport. A correct thermal and fluid dynamic boundary layer prediction on the channel walls and the other contact surface with porous layers requires usually a dense finite element volumes discretization near wall, especially if laminar flows occur: therefore, the boundary layer computational cost tends to be the major one.
Technical Paper

A PEM Fuel Cell Distributed Parameters Model Aiming at Studying the Production of Liquid Water Within the Cell During its Normal Operation: Model Description, Implementation and Validation

2011-04-12
2011-01-1176
One of the major issues coming out from low temperature fuel cells concerns the production of water vapor as a chemical reaction (between hydrogen and oxygen) by-product and its consequent condensation (at certain operating conditions), determining the presence of an amount of liquid water affecting the performance of the fuel cell stack: the production and the quantity of liquid water are strictly influenced by boundaries and power output conditions. Starting from this point, this work focuses on collecting all the required information available in literature and defining a suitable CFD model able to predict the production of liquid water within the fuel cell, while at the same time localizing it and determining the consequences on the PEM cell performances.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Energy Storage: Regenerative Fuel Cell Systems for Space Exploration

2011-10-18
2011-01-2624
Future exploration missions, including human missions to the Moon and Mars, are expected to have increasingly demanding operational requirements. Generating electrical power, and also maintaining a specific thermal environment, are both critical capabilities for any mission. In the case of exploration, both a wide range of mission types (robotic, human, ISRU etc.) and a variety of environments exist: from interplanetary space, to the shadow of a lunar crater, to the attenuated and red-shifted lighting on the Martian surface, power requirements must be met. This objective could be met with different technologies. The choice is dictated by the operating conditions and the different types of mission. TAS-I is historically mainly involved in missions related to the space exploration with the presence of astronauts. A typical example is the exploration of the Moon with the installation on the Moon surface of a base inclusive of pressurized habitats and rovers.
Technical Paper

Development of a Control Strategy for Complex Light-Duty Diesel-Hybrid Powertrains

2011-09-11
2011-24-0076
Hybrid Electric Vehicles (HEVs) represent a powerful technology to save fuel and reduce CO₂ emissions, through the synergic use of a conventional internal combustion engine and one or more electric machines. However their performance strongly depends on the control strategy that shares the power demand among the engine and the electric motors at each time instant, with the objective of minimizing a pre-defined cost function over an entire driving cycle, and satisfying, at the same time, any additional constraints. The aim of this work is therefore the definition of a methodology to develop, through numerical simulation, a sub-optimal hybrid powertrain controller: starting from the problem definition, the ideal performance for a case study hybrid architecture was analyzed through a global optimization algorithm in order to point out information which can be used to define new control laws.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Performance Optimization for the XAM Hybrid Electric Vehicle Prototype

2012-04-16
2012-01-0773
Given the ever-increasing concern about environmental issues, the automotive industry is focusing on the development of innovative technologies that allow reduction of gas emissions and fuel consumption. Over the last few years, Hybrid Electric Vehicles (HEV) and Fuel Cell Vehicles have been developed as the most promising alternative solutions for many car manufacturers. Although fuel cells are considered as the best technology to have zero emission, the impact on infrastructure for a large-scale deployment is not yet solved. For this reason, HEV represent a valid shorter-term alternative that guarantees drastic emissions reduction and reduced fuel consumption with a much lower infrastructural impact. This paper reports the results obtained by the optimization of the emissions and fuel performances of a hybrid electric city vehicle for urban transportation named XAM (eXtreme Automotive Mobility). In order to optimize these performances, a 1D model of the vehicle has been created.
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

2013-04-08
2013-01-0964
Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Technical Paper

The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines

2006-04-03
2006-01-0437
The potential of an electric assisted turbocharger for a heavy-duty diesel engine has been analyzed in this work, in order to evaluate the turbo-lag reductions and the fuel consumption savings that could be obtained in an urban bus for different operating conditions. The aim of the research project was to replace the current variable geometry turbine with a fixed geometry turbine, connecting an electric machine which can be operated both as an electric motor and as an electric generator to the turbo shaft. The electric motor can be used to speed up the turbocharger during the acceleration transients and reduce the turbo-lag, while the generator can be used to recover the excess exhaust energy when the engine is operated near the rated speed, in order to produce electrical power that can be used to drive engine auxiliaries. In this way the engine efficiency can be improved and a kind of “electric turbocompounding” can be obtained.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Driveline Backlash and Half-shaft Torque Estimation for Electric Powertrains Control

2018-04-03
2018-01-1345
The nonlinear behavior of automotive powertrains is mainly due to the presence of backlash between engaging components. In particular, during tip-in or tip-out maneuvers, backlash allows the generation of impacts that negatively affect the vehicle NVH performance. Due to the faster response of electric motors with respect to conventional internal combustion engines, this problem is even more critical for electric vehicles. In order to employ numerical optimal control methods for backlash compensation, the system states have to be known. In this paper, an electric powertrain is modeled as a two-mass oscillator with lumped backlash. This model estimates the system states when in no-contact mode while a Kalman filter that relies only on commonly available speed measurements is active in the contact phase. The powertrain model is validated using experimental data collected during vehicle testing and the online estimated half-shaft torque is shown.
X