Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Water Injection Contribution to Enabling Stoichiometric Air-to-Fuel Ratio Operation at Rated Power Conditions of a High-Performance DISI Single Cylinder Engine

2019-09-09
2019-24-0173
The next generation of gasoline turbo-charged engines will have to deal with the continuous tightening of emissions regulations. In fact, to better represent real-world emission figures, WLTP and RDE cycles focus on stricter criteria; spanning higher speeds and loads potentially covering the whole engine operating map. It is common practice at present to use overfueling to avoid catastrophic failure of turbine and aftertreatment systems at very high engine speeds and loads due to excessive temperatures. A past technology, which is presently enjoying a resurgence of interest, is water injection. In particular, for high-specific-power applications, this could be used as replacement strategy for overfueling, potentially enabling full operating range stoichiometric operation with no compromise in terms of maximum performance with respect to today.
Technical Paper

Numerical Assessment of Port Water Injection Capabilities to Reduce CO2 Emissions of a Lambda 1 Turbocharged Spark Ignition Engine

2023-04-11
2023-01-0181
The continuous tightening of CO2 emission targets along with the introduction of Real Driving Emissions (RDE) tests make Water Injection (WI) one of the most promising solutions to improve efficiency, enhance performance and reduce emissions of turbocharged high-performance Spark Ignition engines. This technology, by reducing local in-cylinder mixture temperature, enables higher compression ratios, optimal spark timing and stoichiometric combustion over the entire engine operating range. This research activity, therefore, aims to assess the benefits in terms of CO2 emission reduction of a Port Water Injection (PWI) system integrated in a Downsized Turbocharged Direct Injection Spark Ignition (T-DISI) Engine. In this regard, a 1D-CFD model of the engine capable to predict the impact of the water content on both the combustion process and the knock likelihood was firstly developed.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
X