Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

An Experimentally Validated Model for Predicting Refrigerant and Lubricant Inventory in MAC Heat Exchangers

2014-04-01
2014-01-0694
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR).
Journal Article

Experimentally Validated Model of Refrigerant Distribution in a Parallel Microchannel Evaporator

2012-04-16
2012-01-0321
This paper develops a model for a parallel microchannel evaporator that incorporates quality variation at the tube inlets and variable mass flow rates among tubes. The flow distribution is based on the equal pressure drop along each flow path containing headers and tubes. The prediction of pressure drop, cooling capacity, and exit superheat strongly agree with 48 different experimental results obtained in four configurations using R134a. Predicted temperature profiles are very close to infrared images of actual evaporator surface. When compared to the uniform distribution model (that assumes uniform distribution of refrigerant mass flow rate and quality) results from the new model indicate superior prediction of cooling capacity, and exit superheat. Model results indicate maldistribution of refrigerant mass flow rate among the parallel tubes, caused primarily by pressure drop in the outlet header.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel

2010-05-05
2010-01-1502
Increasing concern for the environment and the impending scarcity of fossil fuels requires continued development in hydrocarbon combustion science. For compression-ignition engines, adding oxygenated compounds to the fuel can reduce noise, soot formation, and unburned hydrocarbons while simultaneously increasing thermal efficiency. In order to reliably model and design compression-ignition engines to use new fuel blends, accurate spray characteristic data is required. In this study, the spray characteristics of various blends of the oxygenated compound di-n-butyl ether (DNBE) with standard EN590 Diesel fuel are presented, including spray cone angle and spray penetration length for both liquid and gas phases. The experiments were conducted in a spray chamber at ambient conditions of 50 bar and 800 K, simulating TDC conditions in a Diesel engine. Injection pressures were varied from 700-1600 bar.
Technical Paper

Refrigerant-Oil Flow at the Compressor Discharge

2016-04-05
2016-01-0247
Automotive air conditioning compressor produces an annular-mist flow consisting of gas-phase refrigerant flow with oil film and oil droplets. This paper reports a method to calculate the oil retention and oil circulation ratio based on oil film thickness, wave speed, oil droplet size, oil droplet speed, and mass flow rate. Oil flow parameters are measured by high-speed camera capture and video processing in a non-invasive way. The estimated oil retention and oil circulation ratio results are compared quantitatively with the measurements from system experiments under different compressor outlet gas superficial velocity. The agreement between video result and sampling measurement shows that this method can be applied in other annular-mist flow analysis. It is also shown that most of the oil exists in film from the mass point of view while oil droplets contributes more to the oil mass flow rate because they travel in a much higher speed.
Technical Paper

Experimental Study of an Air Conditioning-Heat Pump System for Electric Vehicles

2016-04-05
2016-01-0257
This paper presents the experimentally obtained performance characteristics of an air conditioning-heat pump system that uses heat exchangers from a commercially available Nissan Leaf EV. It was found that refrigerant charge needed for cooling operation was larger than that for heating function with the test setup. The effects of: a). indoor air flow rate, b). outdoor air flow rate, and c). compressor speed on heating capacity and energy efficiency were explored and presented. Appropriate opening size of expansion valve that controlled subcooling for better energy efficiency was discussed and results were presented. Expansion valve opening size also strongly affected charge migration. Warm-up tests at different ambient conditions showed the necessity of a secondary heater to be reserved for very low ambient temperature.
Technical Paper

Numerical study on wall film formation and evaporation

2014-04-01
2014-01-1112
The numerical models presented in this study are established based on discrete phase model (DPM) of spray dispersion and evaporation considering the cold wall operating condition of port injection system. All the models were implemented into the CFD software FLUENT. Gas flow and film flow and spray are coupled by mass, momentum and energy transfer due to spray impingement, film evaporation and surface shear stress. Influences of impact parameters including injection height, injection duration and injection angle on the formation and evaporation of wall-film are discussed. The results show that, with the increase of injection height, the maximum film thickness and wall film ratio decrease, and fuel vapor mass ratio increases. The reductions of film thickness and wall film ratio are not obvious as the increasing of injection height. Extending the injection duration could add the maximum film thickness and film area.
Technical Paper

Effect of Flow Regime in the Horizontal Inlet Header on Refrigerant-Oil Mixture Distribution in a MAC Microchannel Evaporator

2014-04-01
2014-01-0701
The effect of lubricant on distribution is investigated by relating the flow regime in the horizontal inlet header and the corresponding infrared image of the evaporator. Visualization of the flow regime is performed by high-speed camera. R134a is used as the refrigerant with PAG 46 as lubricant, forming foam in all flow regimes. Quantitative information including foam location, foam layer thickness is obtained using a matlab-based video processing program. Oil circulation rate effect on flow regime is analyzed quantitatively.
Technical Paper

Lubricant Effect on Performance of R134a MAC Microchannel Evaporators

2014-04-01
2014-01-0692
This paper presents an experimental study of lubricant effect on the performance of microchannel evaporators in a typical MAC system. R134a is used as the refrigerant with PAG46 lubricant. The increase of oil circulation rate elevates the pressure drop of the evaporator. The specific enthalpy change in evaporator decreases with increasing oil circulation rate, while refrigerant distribution appears to be more uniform as indicated by infrared images of the evaporator surface temperatures. Thus mass flow rate increases.
Journal Article

Gas Bubble Development in Connecting Rod Supply Systems Caused by Oil Aeration

2020-09-15
2020-01-2163
This paper focusses on the supply conditions of a connecting rod bearing. Thereto, a novel simulation approach is presented, which is based on a transient 3D-CFD multiphase flow simulation including the ability of gas dissolution and diffusive mass transfer. The model determines the pressure behavior and the gas bubble development in the oil supply system of a connecting rod bearing. It allows to visualize the flow behavior and the existence of gas bubbles in order to get a detailed impression of the physical occurrences. The experimental results from Maaßen [5], where a big gas bubble is formed in the supply bore by gas cavitation, are confirmed and used for validation. Further the flow behavior of free air ratios is investigated. The paper concludes that the supply conditions of a connecting rod bearing are strongly influenced by the gas bubble in terms of the fluid composition and the volume flow rate at the connecting rod bearing inlet.
X