Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Establishing New Correlations Between In-Cylinder Charge Motion and Combustion Process in Gasoline Engines Through a Numerical DOE

2010-04-12
2010-01-0349
This paper presents an innovative methodology and the corresponding results of a study whose goal is to identify the main links between in-cylinder charge motion and the development of combustion without taking into consideration how to create this charge motion (shape of the intake ducts, valve timing, etc …). During this study a specific methodology was developed and used. It is based on the calculation of a “3D numerical test bench” matrix planned following the Design Of Experiments method. Many aerodynamic configurations obtained by combining the three main aerodynamic motions with several different intensities (tumble, cross-tumble or swirl) at the intake valve closing were calculated.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Torso Improvements in Child Dummies Used for Certification Tests in Europe

1997-11-12
973315
Child dummies used in certification dynamic tests have not been improved since their marketing and their approval as European regulation dummies. Their main shortcoming lies in a too high and therefore unrealistic stiffness of the torso front part. The paper addresses a study carried out in the aim of solving this problem. It includes two parts: in a first section, the changes brought to the dummy torso and intended to improve its biofidelity and to reduce stiffness drastically are described. In order to reach such an objective, the lower part of the upper torso was remodelled; the pelvis profile was redefined and the geometrical and mechanical characteristics of the foam used for the abdominal insert were changed. The results obtained using two transducers installed in the abdominal section are then presented. The measurement principle of the first transducer consists in a pressure measurement, and the principle of the second one in a load measurement.
Technical Paper

Fleet Management of the Future

1998-10-19
98C059
This paper deals with fleet management systems and the means to integrate new communication and computer technologies to improve transportation companies efficiency. It focuses on the integration of embedded electronic systems for communication and data management through the use of on-board computers, taking the point of view of the truck manufacturer. It introduces the idea of making the vehicle a nod of a complete communication network. After briefly presenting fleet management problematic and some of the major existing solutions, it analyzes how new technologies can be integrated and what major advantages they would bring.
Technical Paper

Impact of Sulfur on NOx Trap Catalyst Activity - Study of the Regeneration Conditions

1998-10-19
982607
Laboratory and engine tests were carried out to describe the sulphur effect on the NOx adsorbers catalysts efficiency for gasoline lean burn engines. Two main aspects were studied. The first one deals with the NOx storage efficiency of the adsorber under laboratory conditions, especially regarding the SO2 gas phase concentration. The rate of sulfur storing is greatly affected by the SO2 gas concentration. While 6.5 hours are required to get from 70 % NOx reduction to only 35 % when the gas mixture contains 10 ppm SO2, it takes 20 hours with 5 ppm SO2 and more than 60 hours with the 2 ppm SO2 condition. The relationship between the loss in NOx trap performance and SO2 concentration appears to have an exponential shape. The same amount of sulphur (0.8 % mass) is deposited onto the catalyst within 10 hours with the feed gas containing 10 ppm of SO2 and within 50 hours with 2 ppm SO2. Nevertheless, It was shown that the loss in NOx-Trap efficiency is not the same in these two cases.
Technical Paper

A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines

2010-05-05
2010-01-1493
This paper presents a new 0D phenomenological approach to predict the combustion process in diesel engines operated under various running conditions. The aim of this work is to develop a physical approach in order to improve the prediction of in-cylinder pressure and heat release. The main contribution of this study is the modeling of the premixed part of the diesel combustion with a further extension of the model for multi-injection strategies. In phenomenological diesel combustion models, the premixed combustion phase is usually modeled by the propagation of a turbulent flame front. However, experimental studies have shown that this phase of diesel combustion is actually a rapid combustion of part of the fuel injected and mixed with the surrounding gas. This mixture burns quasi instantaneously when favorable thermodynamic conditions are locally reached. A chemical process then controls this combustion.
Technical Paper

Energy Management of a High Efficiency Hybrid Electric Automatic Transmission

2010-04-12
2010-01-1311
The energy management of a hybrid vehicle defines the vehicle power flow that minimizes fuel consumption and exhaust emissions. In a combined hybrid the complex architecture requires a multi-input control from the energy management. A classic optimal control obtained with dynamic programming shows that thanks to the high efficiency hybrid electric variable transmission, energy losses come mainly from the internal combustion engine. This paper therefore proposes a sub-optimal control based on the maximization of the engine efficiency that avoids multi-input control. This strategy achieves two aims: enhanced performances in terms of fuel economy and a reduction of computational time.
Technical Paper

Ultra Light Compact Economical Vehicle Concept

2002-07-09
2002-01-2071
State of the art demonstrates that weight of vehicle increases with length of car body. Integration of powertrain in mid rear underfloor location enables to shorten car body by more than 0,5m and to save partially heavy longitudinal members. Underfloor integration of power train induces higher stance floor for more conviviality of passengers visibility. Safety factors are improved by lowering gravity centre, better repartition of front / rear masses during braking, easier management of crash by straighter and higher front longitudinal members and free front space. Space frame architecture simplifies light weight technologies application by using 2D bended aluminum profiles. Low investment is ensured by minimising castings application to suspension attachments and interlinking upperbody to underbody. Floor and external panels are designed for aluminum sheet stampings.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

Study of Intake Ports Design for Ultra Low Cost (ULC) Gasoline Engine Using STAR-CD

2012-04-16
2012-01-0407
In this study, different designs of intake ports for two-stroke Ultra Low Cost Gasoline Direct Injection Engine (ULC-GE) has been analyzed to conclude on best design using steady state analysis in STAR-CD. The four types of intake ports design with two cylinders, each having fourteen ports, have been studied. The basic differences in designs are horizontal inlet entry (perpendicular to cylinder axis) and vertical inlet entry (in-line with cylinder axis) having rotation of flow clockwise and anticlockwise. Each type is further differentiated in eight cases with varying distances between axis of two-cylinder as 85mm, 88mm, 91 mm, 94 mm, 97 mm, 100 mm, 105 mm and 112 mm. These designs are analyzed for four different pressure drops as 10 mbar, 50 mbar, 100 mbar and 150 mbar.
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

Analysis of the Dynamics of a Hydraulic Control Circuit of an Automatic Gearbox

2003-03-03
2003-01-0317
The description of the supply pressure hydraulic circuit and the couplings between its components are presented. A comparison between simulations and experiments is carried out. Using some linear facilities, it is possible to conclude that the low frequency modes mainly correspond to the wave effects of hydraulic lines which connect valves to each other. In order to maintain a pressure in the supply circuit, an electronic pressure control is necessary. The design of a control law needs to build different linear models for different levels of pressure since the system is very non linear. Three transfer functions are found for three pressure levels. These transfer functions are very similar to the ones used by the automatic control department and obtained by experiments. Using these transfer functions it is possible to design the control law.
Technical Paper

Air Quality and Odors Evaluation for Passengers Compartment

1995-02-01
950016
The paper presents the VALEO and RENAULT approach to study odor problems for passengers compartment. The first part describes the method chosen to form a panel, and the second part presents a vehicle application.
Technical Paper

European Programme on Emissions, Fuels and Engine Technologies - Objectives and Design

1996-05-01
961065
The quality of the environment is a continuing concern of the public in Europe and has been the driving force for much research, development and expenditure by the European Vehicle and Oil Industries. Legislation that has already been implemented and planned provides substantial improvements in air quality. Further improvements however are harder to achieve. Consequently, it has been accepted that a variety of measures, including vehicle/fuel changes need to be investigated together to make further air quality improvements. This paper describes the principles and organisational structure of a co-operative programme carried out by the European automobile industry (represented by ACEA), and the European oil industry (represented by EUROPIA). This programme, building on US AQIRP, is an important input into the process for developing environmental Legislation for the European Union (the European Auto/Oil process).
X