Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines

2011-08-30
2011-01-1893
To improve the prediction of the combustion processes in spark ignition engines, a 0D flame/wall interaction submodel has been developed. A two-zones combustion model is implemented and the designed submodel for the flame/wall interaction is included. The flame/wall interaction phenomenon is conceived as a dimensionless function multiplying the burning rate equation. The submodel considers the cylinder shape and the flame surface that spreads inside the combustion chamber. The designed function represents the influence of the cylinder walls while the flame surface propagates across the cylinder. To determine the validity of the combustion model and the flame/wall interaction submodel, the system was tested using the available measurements on a 2 liter SI engine. The model was validated by comparing simulated cylinder pressure and energy release rate with measurements. A good agreement between the implemented model and the measurements was obtained.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

Extraction of Static Car Body Stiffness from Dynamic Measurements

2010-04-12
2010-01-0228
This paper describes a practical approach to extract the global static stiffness of a body in white (BIW) from dynamic measurements in free-free conditions. Based on a limited set of measured frequency response functions (FRF), the torsional and bending stiffness values are calculated using an FRF based substructuring approach in combination with inverse force identification. A second approach consists of a modal approach whereby the static car body stiffness is deduced from a full free-free modal identification including residual stiffness estimation at the clamping and load positions. As an extra important result this approach allows for evaluating the modal contribution of the flexible car body modes to the global static stiffness values. The methods have been extensively investigated using finite element modeling data and verified on a series of body in white measurements.
Technical Paper

Modeling the Sound Source of an Intake and Predicting the Intake Sound Pressure Level for a Motorcycle

2003-09-15
2003-32-0058
In order to accurately estimate the intake sound pressure level, it is important to improve the accuracy of the air cleaner simulation model and precisely estimate the sound source of the intake. It has been confirmed that the modeling accuracy of an air cleaner can be improved by considering the vibro-acoustic coupling. Meanwhile, the sound source of the intake depends not only on the engine specifications, but on the intake system and even the exhaust system design. In this reported example, since it is difficult to estimate the sound source of the intake only by calculation, due to the aforementioned reasons, actual measurements were carried out to define the sound source. The method is such that the sound source is modeled by acoustic impedance and volume velocity in the engine, and the acoustic impedance is measured using an impedance tube. Then, the sound pressure at the intake opening is measured.
Technical Paper

Identification of the Best Modal Parameters and Strategies for FE Model Updating

2001-04-30
2001-01-1439
The use of numerical models as basis to assemble or modify all kind of new structures is increasing over the last years. This has as benefit that it reduces the number of expensive, physical prototypes. These numerical models however must be verified and validated against measured data. Updating is generally needed to guarantee accurate correspondence with reality. This paper focuses on an exhaust. It describes the different steps of the complete process from the acquisition till the updating. On the measurement side, some typical acquisition measures and an efficient approach to handle (slightly) inconsistent data sets is explained. On the numerical side, it is investigated how to achieve the final updated exhaust with physical relevant characteristics.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Impact of Gasoline RON and MON on a Turbocharged MPI SI Engine Performances

2004-06-08
2004-01-2001
This paper presents a combustion study of gasoline anti-knock quality effects on turbocharged MPI SI engine performances. A comparative analysis between many fuels covering various Research Octane Number (RON), Motor Octane Number (MON) and sensitivity (RON-MON) is described. The study was conducted on steady state test bench, using a four cylinder 2 L engine. In turbocharged gasoline engines, knock resistance is more than ever a crucial issue to achieve high performance and good customer's consumption level. Octane level is therefore a fuel key parameter. Considering thermodynamic aspects of such combustion at full load, performances, fuel consumption and engine thermal strains are evaluated for each tested fuel. An important influence of RON at iso sensitivity was observed. Because of the extreme conditions met on turbocharged gasoline engine, the impact of RON is exacerbated on such engine and illustrates the great benefits of an increase RON fuel.
Technical Paper

Advances in Industrial Modal Analysis

2001-03-05
2001-01-3832
One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
Technical Paper

Experimental and Numerical Modelling of Friction Induced Noise in Disc Brakes

2002-03-04
2002-01-1192
Friction-induced vibration is a serious problem in many industrial applications containing systems with rotating and/or sliding parts. Brake noise is a typical example. The critical element in the noise generation process is the combination of friction-induced loads with the dynamics of the braking system. In the present paper, a detailed experimental and numerical study of a specific low-frequency brake squeal problem is made on a simplified brake noise test rig. First, the signal and spatial characteristics of the noise were analyzed by spectral and acoustic holography techniques. A parametric study of influence factors as brake pressure, rotation speed, etc. was made. Operational deformation analysis during squeal confirms the dominant modal behavior of the components, implying the critical role of the assembly structural dynamics.
Technical Paper

Inverse Numerical Acoustics of a Truck Engine

2003-05-05
2003-01-1692
Source identification applied to a truck engine and using inverse numerical acoustics is presented. The approach is based on acoustic transfer vectors (ATV) and truncated singular value decomposition (SVD). Acoustic transfer vectors are arrays of transfer functions between surface normal velocity and acoustic pressure at response points. They can be computed using boundary element methods (indirect, direct or multi-domain direct formulations) or finite element methods (in physical or modal coordinates). Regularization techniques such as the so-called L-curve approach are used to identify the optimum SVD truncation. To increase the reliability of the source identification, the approach can use velocity measurements on the boundary surface as well as the standard nearfield pressure measurements. It also allows for linear or spline interpolation of the acoustic transfer vectors in the frequency domain, to increase computational speed.
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Wind Noise Source Identification by Inverse Method in Wind Tunnel Test

2017-06-05
2017-01-1784
Wind noise in automobile is becoming more and more important as customer requirements increase. On the other hand great progress has been made on engine and road noises. Thus, for many vehicles, wind noise is the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able for a new car project to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin can sometimes change significantly with only a small modification of the exterior design.
X