Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Vehicle Evaluation of Synthetic and Conventional Engine Oils

1975-02-01
750827
A five-vehicle, 64 000-km test with 7.45 litre V-8 engines was conducted to determine if synthetic engine oils provided performance sufficiently superior to that of conventional engine oils to permit longer oil change intervals. The results show better performance in two areas of deposit control; inferior performance with respect to wear protection; and essentially equivalent performance in the areas of fuel and oil economies. Based on these data, it was concluded that synthetic engine oils do not provide the necessary performance required to safely recommend their use for extended oil change intervals. In addition, a cost analysis shows that the use of synthetic engine oils, even at a change interval of 32 000 km, will essentially double the customers' cost compared with conventional engine oils at GM's current 12 000-km change interval.
Technical Paper

Lubricant Viscosity Effects on Passenger Car Fuel Economy

1975-02-01
750675
As part of General Motors effort to improve fuel economy, the effects of engine and power train lubricant viscosities were investigated in passenger car tests using either high- or low- viscosity lubricants in the engine, automatic transmission, and rear axle. Fuel economy was determined in both constant speed and various driving cycle tests with the car fully warmed-up. In addition, fuel economy was determined in cold-start driving cycle tests. Using low-viscosity lubricants instead of high-viscosity lubricants improved warmed-up fuel economy by as much as 5%, depending upon the differences in lubricant viscosity and type of driving. Cold-start fuel economy with low-viscosity lubricants was 5% greater than that with high-viscosity lubricants. With such improvements, it is concluded that significant customer fuel economy gains can be obtained by using the lowest viscosity engine and power train lubricants recommended for service.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

A Modal Synthesis Technique for Determining Dynamic Properties for a Structure for Mass and Stiffness Changes

1974-02-01
740329
The assembly and particularly the reduction of the mass and stiffness matrix for a large system can be a significant portion of the computational cost of finding the mode shapes and natural frequencies. Therefore, parameter studies for design purposes can be prohibitive if these matrices are reassembled and reduced for each change. The purpose of this paper is to outline the procedure for using the modes of the original system to determine the dynamic characteristics of the changed system. The method also results in computational savings for boundary condition changes and for large systems that are nearly-symmetric except for a few mass and stiffness changes. To illustrate the method several changes are made to a ladder frame. The results from an analysis using the reconstructed mass and stiffness matrices and the modal synthesis technique are compared to show the accuracy and freedom requirements.
Technical Paper

Numerically Controlled Milling for Making Experimental Turbomachinery

1967-02-01
670096
Utilization of numerically controlled milling has been found particularly attractive in producing, in limited quantities, the three-dimensional curved surfaces characteristic of turbomachinery. In experimental and developmental programs its use can result in decreased fabrication cost, reduced lead time, and improved dimensional accuracy. Following a review of the general classifications of numerically controlled milling machines available for manufacture of such parts, illustrations are given of some of the procedures and techniques employed in their use. A variety of parts made using numerical control serve as examples.
Technical Paper

Friction Characteristics of Controlled-Slip Differential Lubricants

1966-02-01
660778
Controlled-slip differentials (CSD) improve car operation under wheel slipping conditions. The performance of CSD's is dependent upon two criteria associated with clutch friction: “chatter” and “effectiveness.” “Chatter” is an undesirable noise which may occur during differential action. “Effectiveness” is a measure of the ability of the CSD clutches to transfer torque, during wheel slippage, to the wheel with the greater traction. The objective of this investigation was to definitely establish the cause of chatter, measure CSD effectiveness, and relate friction characteristics of lubricants to CSD operation. In tests with an instrumented car, it was found that both chatter and effectiveness are strongly influenced by the lubricant. Chatter occurred with lubricants that produced an increase in clutch friction with decreasing sliding speed. Chatter did not occur with lubricants containing friction modifiers which produced a decrease in clutch friction with decreasing sliding speed.
Technical Paper

Engine Oil MS Test Sequences IIA and IIIA

1965-02-01
650867
Engine oil test Sequences IIA and IIIA have been developed to replace Sequences I, II, and III. These new sequences are designed to evaluate lubricants for use in current passenger car engines under severe (MS) service conditions. Lubricant performance is evaluated with respect to scuffing wear, rust, corrosion, deposits, and rumble. The Sequence IIA and IIIA test procedure involves major changes which affect the evaluation of engine rusting and provides improved correlation between test results and short-trip service. Average engine rust ratings correlate with service data within ±0.5 numbers. The new test also provides better repeatability and reproducibility in a significantly shorter schedule. The rust repeatability and reproducibility is less than ±0.2 and ±0.6 numbers, respectively. Test time has been reduced 52%.
Technical Paper

Seal Testing to establish quality control specifications Can Reduce “LEAKERS”

1960-01-01
600047
THIS REPORT deals with the major parameters of a seal application which affect its efficiency and life, as determined by controlled laboratory testing in CM Research Laboratories.* A. Shaft 1. Surface Roughness 2. Machining Lead B. Assembly C. Seal 1. Seal Diameter Control Trim Interference Spring Rate 2. Seal Lip Pressure Trim Interference Spring Rate Rubber Hardness Eccentricity 3. Seal Eccentricity Mold Register Assembly Trim
Technical Paper

Projected Lubricant Requirements of Engines Operating with Lead-Free Gasoline

1971-02-01
710585
Future low emissions engines will burn unleaded gasoline. Compared with engines of 1970, future engines will have lower concentrations of NOx in the blowby gases, and lower blowby flow-rates; however, oil temperatures will probably be unchanged. The consequences of these conditions for engines using high quality (SE) oils at current drain intervals are: virtual elimination of rust, reduction of sludge, no effect on wear and oil thickening, and possible worsening of varnish. Therefore, extension of the drain interval with SE engine oils in the future may be possible, but final decisions will depend on the findings of research in the areas of engine wear and varnish, and oil thickening.
X