Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimizing Resistance Spot Welding on Aluminum-Alloy 6111 Autobody Sheet

1994-03-01
940662
Aluminum use for automotive body sheet applications is growing. This growth requires improvement of related joining processes and technology. Resistance spot welding will be one of the major joining technologies used in assembling automobiles. When spot welding aluminum, electrode tip life is limited by tip erosion and pickup of aluminum on the tip. Increasing weld current improves weld strength (to a limit), however this reduces tip life. This study examines the control variables in the resistance spot welding process and offers an improved weld schedule to achieve desired weld properties while maximizing tip life. First, the limits of weld parameters where satisfactory welds can be obtained are determined. A window of tip force and weld current is established for a given material and tip geometry. These limits are used to optimize the weld schedule in terms of tip life. Spot welds fail on the basis of shear strength, button diameter or peel rate.
Technical Paper

Production and Performance of High Speed GTA Welded Aluminum Tailored Blanks

1995-02-01
950722
Tailored blanks have been produced by a variety of welding processes. Currently, laser welding and mash seam welding are commonly used to produce steel blanks for automotive stampings. Because of the high electrical and thermal conductivity of aluminum, mash seam welding is generally not suitable for this application. Laser welding is currently in the developmental stage for welding aluminum. Reynolds Metals Company is investigating another existing welding technology -- Gas Tungsten Arc Welding (GTAW)--for welding of aluminum tailored blanks. Using the GTAW process, production weld speeds approximating those of laser systems can be obtained. Additionally, good control of weld geometry and quality can be easily attained. This study focuses on GTA welding process parameters for joining various alloys, tempers, and thickness of aluminum. Additionally, performance of welded joints in terms of strength, ductility, and formability are discussed.
X