Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Benefits of High Injection Pressure on Future Heavy Duty Engine Performance

2015-09-06
2015-24-2441
Diesel fuel injection pressures have increased steadily on heavy duty engines over the last twenty years and pressures as high as 300MPa are now possible. This was driven by the need to control toxic exhaust emissions, in particular particulate emissions using advanced in-cylinder combustion strategies. With the introduction of efficient aftertreatment systems for both particulate and NOx emissions control there is less demand for in-cylinder emissions control especially considering the drive for improved fuel economy. In this paper we consider the benefit of high fuel injection pressure for a number of emissions control strategies with different balances of in-cylinder and exhaust aftertreatment emissions control. A test program was undertaken on a single cylinder heavy duty research engine installed at the University of Brighton, in collaboration with Ricardo.
Technical Paper

The Ultra Low Emissions Potential of the Recuperated Split Cycle Combustion System

2019-09-09
2019-24-0189
The recuperated split cycle engine is a fundamentally new class of internal combustion engine that offers a step change in thermal efficiency over conventional Otto and Diesel cycle engines. In a split cycle engine, the compression and combustion strokes are performed in different cylinders. Intensive cooling of the compression stroke by the injection of liquid nitrogen directly into the chamber enables the recovery of waste heat from the exhaust between the compression and combustion cylinders. Brake efficiencies of over 50% have been reported without compression cooling, rising to 60% where the compression stroke is cooled by the injection of liquid nitrogen. The technology targets the heavy duty, long-haul sector where electrification is ineffective. In this paper, results from an experimental program conducted on a single cylinder research engine, representing the combustor cylinder of a recuperated split cycle engine are reported.
Technical Paper

Thermo-Diffusive Flame Speed Adjustment and its Application to Hydrogen Engines

2023-04-11
2023-01-0197
Practical direct injection hydrogen combustion applications typically require operating the engine in the lean regime. Lean hydrogen flames feature strong thermo-diffusive instability effects making 3D CFD simulations challenging. In particular where the calibrated model is required to operate across a range of equivalence ratios without adjustment and provide accurate results on coarse grids necessitated by the run-times of 3D CFD. In this paper we present a 3D CFD study of a Euro VI HD diesel engine converted to operate on hydrogen gas using direct injection. A scaling methodology recently proposed for conversion from constrained to freely propagating flame based on DNS data is implemented. A laminar flame speed tabulation is developed based on the conversion of 1D results obtained from direct kinetics simulations to freely propagating flame expression considering the behaviour of the thermo-diffusive instability for a wide range of pressures, temperatures and equivalence ratios.
X