Refine Your Search

Topic

Author

Search Results

Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

GDI: Interaction Between Mixture Preparation, Combustion System and Injector Performance

1998-02-23
980498
The development of future engine generations for Gasoline Direct Injection requires sophisticated combustion systems to reach reduced fuel consumption and future emission standards. The design process of these combustion systems has to be based on a fundamental knowledge of the interacting mixture preparation mechanisms. Beside the air motion inside the cylinder mixture preparation is mainly feeded by the fuel spray quality, injector performance respectively. The article therefore presents a fundamental analysis of the GDI mixture preparation and affords an insight into the injector development. Comprehensive experimental studies were performed in high pressure/temperature vessels using Phase Doppler Anemometry, Laser Induced Fluorescence and video techniques to define the significant fuel spray features for GDI. CFD-calculations were additionally applied to study the temporal behavior of the mixture preparation under injection parameter variation.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Electronic Braking System EBS - Status and Advanced Functions

1998-11-16
982781
Since 1996 a 2nd Generation EBS has been available in Europe as an advanced brake system offering a variety of advantages to the OEM as well as to the truck and fleet owner. EBS enhances vehicle safety and improves the braking performance to a “passenger car like” braking feel, allowing less experienced drivers better vehicle handling. The brake lining wear control and retarder integration allow the reduction of operational costs. The safety enhancements achieved by EBS in conjunction with disc brakes, are rewarded by European truck insurance companies by lower insurance fees. The importance of EBS will still gain significantly through the developments in process. EBS is the platform for ESP and ACC, which will be a major contributer to better integration of trucks in dense traffic flow.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Traction Control (ASR) Using Fuel-Injection Suppression - A Cost Effective Method of Engine-Torque Control

1992-02-01
920641
Traction control (ASR) is the logical ongoing development of the antilock braking system (ABS). Due to the high costs involved though, the widespread practice of reducing the engine power by electronic throttle control (or electronic enginepower control) has up to now prevented ASR from becoming as widely proliferated as ABS. A promising method has now been developed in which fuel-injection suppression at individual cylinders is used as a low-price actuator for a budget-priced ASR. First of all, an overview of the possibilities for influencing wheel-torque by means of intervention at the engine and/or brake as a means of reducing driven wheel slip is presented. Then, the system, the control strategy, and the demands on the electronic engine-management system with sequential fuel injection are discussed. The system's possibilities and its limitations are indicated, and fears of damaging effects on the catalytic converter are eliminated.
Technical Paper

The Role of Climatic Conditions on Disc Brake Noise

2006-10-08
2006-01-3209
Since the brake colloquium in 2004 the role of climatic conditions and their relations to noise occurrence, sound pressure level and friction coefficient level is widely discussed in the US and European working groups on brake noise. A systematic study has been started to investigate the influence of relative humidity, absolute humidity and temperature on brake noise and the corresponding friction coefficient level. In this study an enormous effort was taken to keep the influences of the brake parameters, e.g. lining material, Eigenfrequencies and dimensions of the different components as small as possible to investigate the climatic influence only. Strategic humidity and temperature levels were tested according to the Mollier-Entropy-Enthalpy-Diagram which are corresponding to the seasons in the various international regions. A regression analysis evaluates the correlation and the influence of each parameter to noise and friction coefficient level.
Technical Paper

Impact of the Injection and Gas Exchange on the Particle Emission of a Spark Ignited Engine with Port Fuel Injection

2017-03-28
2017-01-0652
This study presents a methodology to predict particle number (PN) generation on a naturally aspirated 4-cylinder gasoline engine with port fuel injection (PFI) from wall wetting, employing numerical CFD simulation and fuel film analysis. Various engine parameters concerning spray pattern, injection timing, intake valve timing, as well as engine load/speed were varied and their impact on wall film and PN was evaluated. The engine, which was driven at wide open throttle (WOT), was equipped with soot particle sampling technology and optical access to the combustion chamber of cylinder 1 in order to visualise non-premixed combustion. High-speed imaging revealed a notable presence of diffusion flames, which were typically initiated between the valve seats and cylinder head. Their size was found to match qualitatively with particulate number measurements. A validated CFD model was employed to simulate spray propagation, film transport and droplet impingement.
Technical Paper

Comparison of a State of the Art Hydraulic Brake System with a Decentralized Hydraulic Brake System Concept for Electric Vehicles

2017-09-17
2017-01-2515
The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

Brake by Wire for Commercial Vehicles

1992-11-01
922489
This address presents the ongoing development of the commercial-vehicle braking system, over and beyond ABS/ASR, towards a brake by wire system (electronically controlled braking system ELB) with pressure-regulating circuit and additional functions. Following the discussion and selection of various concepts, we will present different versions with individual and combined components for the towing vehicle and for the trailer. The safety concept of a pneumatic back-up circuit will be dealt with, as well as the communication through data bus (CAN) both within the braking system itself and with other vehicle systems. The improvement possibilities inherent in ELB will be detailed, with the emphasis on increasing road and traffic safety, on reducing operating costs, and on future vehicle-guidance functions.
Technical Paper

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

1993-03-01
930505
In 1978, Bosch was the first supplier on the market to offer full-function antilock braking systems. In 1993, six years will have passed since Bosch delivered the first traction control system for passenger cars. In the meantime, a considerable amount of experience has been gained through ongoing development and testing. This experience enabled us to define the requirements for directional stability, optimum control strategy, maximum usage of the entire spectrum of drive torque intervention possibilities, and optimized hydraulics for automatic brake intervention. The result is Bosch ABS/ASR5, which in now being introduced to the market. This new ABS/ASR family is designed in modules, which offers high flexibility in function and assembly. Systems are available with traction improvement, or with optimized directional stability and traction. Each version is adapted to the needs of the vehicle drive layout, and adaptable to customer requirements.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
X