Refine Your Search

Topic

Author

Search Results

Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Journal Article

Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation

2013-04-08
2013-01-1089
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

Dynamic Route Guidance - Different Approaches to the System Concepts

1998-02-23
980603
Dynamic route guidance is a main feature when discussing traffic telematics systems. At the present time, several system concepts are in the development or implementation stage. The key elements of dynamic route guidance systems are illustrated in the following. Two approaches could be used when designing the system architecture: 1. Centralized routing in traffic information centers combined with on-board terminals. 2. Mobile routing by on-board navigation units which use information received from traffic information centers. The different approaches are presented in this paper. The influences on component design and the effects on communication needs are discussed. This leads to the “hybrid” system architecture which is presented including implementation examples.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

Development of an Engine Management Strategy and a Cost Effective Catalyst System to Meet SULEV Emission Requirements Demonstrated on a V-6 Engine

2004-03-08
2004-01-1490
The study presented in this paper focuses on measures to minimize exhaust gas emissions to meet SULEV targets on a V6 engine by using a cost efficient system configuration. The study consists of three parts. A) In the first stage, the influence of engine management both on raw emissions and catalyst light off performance was optimized. B) Afterwards, the predefined high cell density catalyst system was tested on an engine test bench. In this stage, thermal data and engine out emissions were used for modeling and prediction of light-off performance for further optimized catalyst concepts. C) In the final stage of the program, the emission performance of the test matrix, including high cell density as well as multifunctional single substrate systems, are studied during the FTP cycle. The presented results show the approach to achieve SULEV emission compliance with innovative engine control strategies in combination with a cost effective metallic catalyst design.
Technical Paper

Automated Model-Based GDI Engine Calibration Adaptive Online DoE Approach

2002-03-04
2002-01-0708
Due to its high number of free parameters, the new generation of gasoline engines with direct injection require an efficient calibration process to handle the system complexity and to avoid a dramatic increase in calibration costs. This paper presents a concept of specific toolboxes within a standardized and automated calibration environment, supporting the complexity of GDI engines and establishing standard procedures for distributed development. The basic idea is the combination of a new and more efficient online DoE approach with the automatic and adaptive identification of the region of interest in the high dimensional parameter space. This guarantees efficient experimental designs even for highly non-linear systems with often irregularly shaped valid regions. As the main advantage for the calibration engineer, the new approach requires almost no pre-investigations and no specific statistical knowledge.
Technical Paper

Strategies to Reduce HC-Emissions During the Cold Starting of a Port Fuel Injected Gasoline Engine

2003-03-03
2003-01-0627
In view of tight emission standards, injection strategies to reduce raw HC-emissions during the cold starting of port fuel injected engines are evaluated in this study. The relevance of spray targeting and atomization is outlined in the first part of this paper. The foundation and performance of different injector concepts with respect to spray characteristics are discussed. Laboratory experiments demonstrate that concepts relying on auxiliary energy, such as air-assistance, fuel heating and injection at elevated system pressures, are capable of producing spray droplet sizes in the SMD-range of 25μm. For future injection strategies aimed at the compliance of SULEV emission levels, this target value is considered to be essential. In the second part of this paper, emission tests of selected injector concepts are carried out using a V6-3.2I ULEV engine operated both in a vehicle and on a test bench.
Technical Paper

Traction Control (ASR) Using Fuel-Injection Suppression - A Cost Effective Method of Engine-Torque Control

1992-02-01
920641
Traction control (ASR) is the logical ongoing development of the antilock braking system (ABS). Due to the high costs involved though, the widespread practice of reducing the engine power by electronic throttle control (or electronic enginepower control) has up to now prevented ASR from becoming as widely proliferated as ABS. A promising method has now been developed in which fuel-injection suppression at individual cylinders is used as a low-price actuator for a budget-priced ASR. First of all, an overview of the possibilities for influencing wheel-torque by means of intervention at the engine and/or brake as a means of reducing driven wheel slip is presented. Then, the system, the control strategy, and the demands on the electronic engine-management system with sequential fuel injection are discussed. The system's possibilities and its limitations are indicated, and fears of damaging effects on the catalytic converter are eliminated.
Technical Paper

Integration Strategy of Safety Systems - Status and Outlook

2016-04-05
2016-01-1499
On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

1993-03-01
930505
In 1978, Bosch was the first supplier on the market to offer full-function antilock braking systems. In 1993, six years will have passed since Bosch delivered the first traction control system for passenger cars. In the meantime, a considerable amount of experience has been gained through ongoing development and testing. This experience enabled us to define the requirements for directional stability, optimum control strategy, maximum usage of the entire spectrum of drive torque intervention possibilities, and optimized hydraulics for automatic brake intervention. The result is Bosch ABS/ASR5, which in now being introduced to the market. This new ABS/ASR family is designed in modules, which offers high flexibility in function and assembly. Systems are available with traction improvement, or with optimized directional stability and traction. Each version is adapted to the needs of the vehicle drive layout, and adaptable to customer requirements.
X