Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Intelligent Predictive Cruise Control Application Analysis for Commercial Vehicles based on a Commercial Vehicles Usage Study

2013-10-20
2013-01-9022
With the introduction of advanced digital road maps, which include information on the slope and curve radius of the highways, predictive control for standard and hybrid commercial vehicles, based on these maps, is about to be released by the vehicle manufacturers. For example, intelligent predictive cruise control has been announced for introduction in 2012 by Scania and Daimler. In addition, hybrid commercial city buses like MAN's Lion's City Hybrid have already been implemented. But the question remains about the type of vehicle suitable for the implementation of predictive intelligent concepts, due to the high investment cost compared to the sometimes relatively low operating cost savings.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Technical Paper

Overview of Truck Accidents in India and Its Economic Loss Estimation

2021-09-22
2021-26-0007
India contributed to 11% of the global road accidents and was ranked 1st among road deaths according to the latest World Health Organization (WHO) report 2018. Indian National Highways (NH) is a meagre 5% of the country’s road network but accounts for 55% of the road accidents and 61% of the road deaths. Majority of the freight traffic is ferried by Commercial Vehicles (CV) or trucks along these highways and this in turn increases the probability of them being involved in a road accident. The country’s economy is forecasted to thrive in the coming years and hence the requirement of CVs is aligned to international categorisation in the supply chain and shall play a pivotal role. In the year 2019, 13,532 road deaths were associated with CV occupants. The trucking industry is an unorganized sector wherein the illegal overloading of vehicles and over-the-limit driving hours pose a serious threat to road users.
Journal Article

Lab-Based Testing of ADAS Applications for Commercial Vehicles

2015-09-29
2015-01-2840
Advanced driver assistance systems (ADAS) are becoming increasingly important for today's commercial vehicles. It is therefore crucial that different ADAS functionalities interact seamlessly with existing electronic control unit (ECU) networks. For example, autonomous emergency braking (AEB) systems directly influence the brake ECU and engine control. It has already become impossible to reliably validate this growing interconnectedness of control interventions in vehicle behavior with prototype vehicles alone. The relevant tests must be brought into the lab at an earlier development stage to evaluate ECU interaction automatically. This paper presents an approach for using hardware-in-the-loop (HIL) simulation to validate ECU networks for extremely diverse ADAS scenarios, while taking into account real sensor data. In a laboratory environment, the sensor systems based on radars, cameras, and maps are stimulated realistically with a combination of simulation and animation.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Investigations on the Tail-Pipe Emissions of Commercial Engines with Advanced One-Dimensional Simulation Methods

2013-04-08
2013-01-1117
Current commercial vehicles' engines are complex systems with multiple degrees of freedom. In conjunction with current emissions regulations manufacturers are forced to combine highly developed engines with complex aftertreatment systems. A comprehensive simulation model including the engine and aftertreatment system has been set up in order to study and optimize the overall system. The model uses a phenomenological spray combustion model to predict fuel consumption and NO emissions. In addition physical models for the material temperatures and the reaction kinetics were generated for the aftertreatment system. Steady state and transient measurements were used to calibrate the engine as well as the aftertreatment model. The aim for a system-level optimization was a reduction of fuel consumption while meeting emission standards.
Technical Paper

Brake by Wire for Commercial Vehicles

1992-11-01
922489
This address presents the ongoing development of the commercial-vehicle braking system, over and beyond ABS/ASR, towards a brake by wire system (electronically controlled braking system ELB) with pressure-regulating circuit and additional functions. Following the discussion and selection of various concepts, we will present different versions with individual and combined components for the towing vehicle and for the trailer. The safety concept of a pneumatic back-up circuit will be dealt with, as well as the communication through data bus (CAN) both within the braking system itself and with other vehicle systems. The improvement possibilities inherent in ELB will be detailed, with the emphasis on increasing road and traffic safety, on reducing operating costs, and on future vehicle-guidance functions.
Technical Paper

Hitch System Comparison — Mechanical, Hydraulic, Electronic

1984-09-01
841130
Modern agricultural tractors are equipped with a hitch control system. These may be mechanical-hydraulic, hydraulic-hydraulic, or electronic-hydraulic. With the variety of design options open to the tractor manufacturer, it is important to select the system which best fits the manufacturer and end user. This paper presents a comprehensive comparison of each system. Robert Bosch has had many years experience in the design and manufacture of components for hitch systems, and hopes to help designers choose the approach best suited for them.
Technical Paper

Increased Safety and Improved Comfort Thanks to Electronic Systems for Bus and Truck Applications

1989-11-01
892509
Electronic systems have been used in commercial vehicles for quite a few years now. At the start, this primarily related to consumer electronics equipment (car radio and CB radio), but, since the late 70s, electronic control systems have also been used for a wide variety of applications in commercial vehicles. This development went hand in hand with the development of digital microcontrollers. It was only when such powerful electronic circuits were developed that it was possible to implement complex control tasks at feasible cost with adequately compact design. Nowadays, an extremely wide variety of systems is offered for the engine, suspension, brakes, comfort and entertainment.
Technical Paper

Anti-Lock Braking System for Commercial Vehicles

1988-10-01
881821
Commercial vehicles must convey people and goods safely and reliable, irrespective of the weather and road conditions. The ABS safety braking systems are an essential prerequisite for fulfillment of this primary task. ABS has been used in European commercial vehicles since 1981. Today there are already fittet as standard in buses to some extend. The contribution to increasing road safety is causing the European lawmakers to make ABS statutory for commercial vehicles and to make it part of their compulsory equipment. Suitable anti-lock braking systems and closed loop configurations for commercial vehicles are demonstrated by theoretical observations and technical driving trials, their axlespecific and closed-loop control characteristics are highlighted.
Technical Paper

New Electronic Systems Worldwide - The Supplier's View

1986-11-01
861972
Despite the tough environmental conditions facing electronic systems in commercial vehicles, electronics is gaining ground also in these applications. In the drive sector it improves the operation of the main and auxiliary drives, upgrades fuel efficiency and reduces emission pollutant levels. It enhances safety by preventing wheel spinning in braking and acceleration. Electronic displays reduce the number of single indications otherwise needed, thus making for more clarity in information for the driver and facilitating the driver's task. Self-diagnosing and integrated emergency operation (“limp home”) capabilities are to ensure availability, a factor of special importance in commercial vehicles. A data interface standardized as widely as possible would allow add-on systems to be coupled easily and flexibly.
Technical Paper

Traction Control (ASR) for Commercial Vehicles. A Further Step Towards Safety on our Roads

1987-11-01
872272
Alongside steering, accelerating and braking are the basic operations in the automobile which are nowadays still left to the driver to perform in their entirety. In performing these basic functions, it may come about that excessive demands are made upon a driver, these arising due to poor road conditions - rain, snow and ice - or as a result of suddenly changing traffic situations. With the introduction of anti-lock braking systems (ABS), a decisive step has been taken to increase active driving and traffic safety. The ABS prevents the lockup of the wheels during overbraking. The vehicle remains steerable and retains stable directional control. Furthermore, in many cases, a shorter braking distance is gained compared to braking with the wheels locked up. BOSCH has been manufacturing and supplying ABS for passenger cars since 1978 and for commercial vehicles and buses since 1981. ABS has proved to be an overwhelming success in practical usage.
Technical Paper

Effects of Diesel Exhaust Fluid (DEF) Injection Configurations on Deposit Formation in the SCR System of a Diesel Engine

2016-02-01
2016-28-0109
In the Selective Catalytic Reduction (SCR) exhaust treatment system, the Diesel Exhaust Fluid (DEF) or urea water solution is injected in the form of spray into exhaust gas for mitigating the NOx emissions. One of the challenges adversely affecting its functionality is incomplete thermolysis of the injected urea upstream of catalyst. This leads to the formation of undesirable deposits, which blocks the exhaust system leading to back pressure rise, loss in NOx reduction efficiency and durability issues. The current study attempts to evaluate the influence of several DEF injection configurations on the deposit formation risk in an airless Urea-SCR exhaust system of Diesel engine used for commercial vehicle applications. Combination of experimental methods involving vehicular trials and detailed CFD simulation for modeling wall film were used. Further, the influence of the urea injection angle, injection cone geometry and mixing length on deposit formation risk was investigated.
Technical Paper

Optimizing Closed Loop Air Mass Control in Naturally Aspirated Engines: A Differential Pressure Sensor Approach to Meet BS6 Emission Norms

2024-01-16
2024-26-0147
In order to meet future emission targets and to achieve better fuel efficiency, closed loop air mass control strategies have become essential across all vehicle segments. Closed loop airmass control mandates measuring fresh air mass entering the engine combustion chamber. However, in Naturally Aspirated (NA) engines, while measuring airmass using conventional air mass sensors (AMS), heavy pulsations in the Air-intake results in errors which would impact closed loop airmass control and lead to inconsistencies in emissions. To address this issue, we studied different approaches using AMS with Resonator, differential pressure sensor across the intake air filter and Lambda based airmass control. Based on this empirical study we found that modelling air mass with differential pressure sensor (Delta-P) using Bernoulli’s principle (Flow rate ∝ √Differential pressure) results in higher accuracies compared to conventional methods.
X