Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Technical Paper

Dynamic Route Guidance - Different Approaches to the System Concepts

1998-02-23
980603
Dynamic route guidance is a main feature when discussing traffic telematics systems. At the present time, several system concepts are in the development or implementation stage. The key elements of dynamic route guidance systems are illustrated in the following. Two approaches could be used when designing the system architecture: 1. Centralized routing in traffic information centers combined with on-board terminals. 2. Mobile routing by on-board navigation units which use information received from traffic information centers. The different approaches are presented in this paper. The influences on component design and the effects on communication needs are discussed. This leads to the “hybrid” system architecture which is presented including implementation examples.
Technical Paper

Physical Layer for Multiplex Networks

1990-02-01
900694
A new physical layer for automobile class B communication networks is based on simple galvanic connections. Only ten passive external components per node are needed to perform reliable data transmission inside the hostile car environment. Every single fault related to the bus will be detected and diagnosed by every node, where a software controlled logic assures continuous data flow.
Technical Paper

Speech-Controlled Wearable Computers for Automotive Shop Workers

2001-03-05
2001-01-0606
Vehicle inspection in repair shops is often still based on paper forms. Information Technology (IT) does not yet support the entire inspection process. In this paper, we introduce a small wearable IT device that is controlled by speech and enables service technicians to wirelessly access relevant data and to perform on-site communication. Users can carry this device in a pocket and use a small headset to enter speech and receive audio feedback. This system provides a completely speech-enabled functionality and thus offers a hands-free operation. After showing the applicability of wearable computers in this environment, we developed a proprietary hardware system consisting of a thin-client connected via a Digital Enhanced Cordless Telecommunications (DECT) link to a standard Personal Computer (PC) that runs a speech engine and hosts a database. Several field tests in garages helped us during the evolution of our prototypes where service technicians critiqued the prototypes.
Technical Paper

Time Triggered CAN (TTCAN)

2001-03-05
2001-01-0073
Connecting microcontrollers, sensors and actuators by several communication systems is state of the art within the electronic architectures of modern vehicles. The communication among these components is widely based on the event triggered communication on the Controller-Area-Network (CAN) protocol. The arbitrating mechanism of this protocol ensures that all messages are transferred according to the priority of their identifiers and that the message with the highest priority will not be disturbed. In the future some mission critical subnetworks within the upcoming generations of vehicle systems, e.g. x-by-wire systems (xbws), will additionally require deterministic behavior in communication during service. Even at maximum bus load, the transmission of all safety related messages must be guaranteed. Moreover it must be possible to determine the point of time when the message will be transmitted with high precision.
Technical Paper

Ethernet and IP - The Solution to Master Complexity, Safety and Security in Vehicle Communication Networks?

2011-04-12
2011-01-1042
The development of vehicle communication networks is challenged not only by the increasing demand in data exchange and required data rate but also the need to connect the vehicle to external sources for personal connectivity of driver and car to infrastructure applications. Solutions are required to master complexity of in-vehicle communication networks, e.g. diagnostic access, flashing of Electronic Control Units, the data backbone connecting the vehicle domains and the data transfer of cameras. Safety (data transfer) and security (violation) issues of the communication networks gain more importance especially by introducing interfaces to external sources either via mobile devices or by connecting the vehicle to other external sources, e.g. Internet and Car to Infrastructure applications. The Internet Protocol (IP) appears to be an ideal solution to address these challenges, especially in connection with an Ethernet physical layer for fast data transfer.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

Error Detection Analysis of Automotive Communication Protocols

1990-02-01
900699
Signals in Automotive Communication Networks often represent safety relevant information. Therefore, automotive network protocols provide multiple powerful mechanisms for error detection and for error reporting. The objective is to ensure that on average less than one undetected error occurs during the lifetime of a vehicle. This places an upper bound on the residual error probability of the communication network. The determination of this residual error probability requires new methods in order to account for the interaction of the various error detection mechanisms. This paper presents an analysis method that has been developed for the investigation of the CAN protocol. This comprehensive investigation distinguishes two types of errors that contribute most significantly to the residual error probability of the CAN protocol. Errors of one type transform stuffbits into information bits or vice versa, and are related to the use of variable bit stuffing.
Technical Paper

Electronic Transmission Control - From Stand Alone Components to Mechatronic Systems

1996-02-01
960430
Electronic control systems for automatic transmissions have been gaming acceptance in recent years Besides the various types of sensors already in use [for speed, temperature, pressure etc], electro-hydraulic actuators and electronic control units [ECU] are also major constituents of modern control systems Former designs utilized discrete components which were wired together In the interim, actuator modules have been developed for use in new transmission designs As well as presenting actuator concepts, this paper describes a highly integrated and advanced control module This module consists of hydraulic actuators, pilot-solenoid values and an electronic control unit which has been realized in multi-layer hybrid technology
Technical Paper

Energy Management - A Key Approach to Design The System Structure of Powertrain Control: Technology Leadership Brief

2012-10-08
2012-01-9007
The electrification of the powertrain, the diversity and the complexity of the more or less individual technical solutions which are preferred by different car manufacturers, create a steadily increasing challenge for the whole automotive industry. Missing standards and sales volumes still below the market expectations on the one hand, and the increasing interaction of the main powertrain domains (engine, transmission, e-drive) caused by upcoming cross domain functions on the other hand, lead to increasing development costs and non-optimal solutions concerning fuel economy improvement. Within the domain of engine management systems Bosch established in the mid-nineties the so called torque structure as the solution to a similar situation addressing the coordination of air management, fuel injection and ignition.
Technical Paper

Error Handling Strategies for Automotive Networks

1988-02-01
880587
A significant portion of communication in Automotive Networks consists of signals, which are vital to the safety of the vehicle. In addition to requirements resulting from the actual transfer of information an Automotive Communication Protocol has to incorporate properties which ensure operational safety even in presence of errors. Based upon a discrimination into reversible errors and irreversible failures, defect nodes have to be determined and subsequently disconnected from the network. In this paper proper schemes for error detection, report, recovery and confinement are presented.
Technical Paper

ASR - Traction Control - A Logical Extension of ABS

1987-02-01
870337
Control of a car is lost, or considerably reduced, whenever one or more of the wheels exceed the stability limit during braking or accelerating due to excessive brake or drive slip. The problem of ensuring optimum stability, steerability and brake distance of a car during hard braking is solved by means of the well-known Anti-lock Braking System (ABS). The task to guarantee stability, steerability and optimum traction during acceleration, particularly on asymmetrical road surfaces and during cornering maneuvers, is being performed by the traction control system (ASR). Several means to provide an optimum traction control are described, e. g the control of engine torque by influencing the throttle plate and/or the ignition and/or the fuel injection.
Technical Paper

Application Specific Microcontroller for Multiplex Wiring

1987-02-01
870515
The new aerial communication protocol “Controller Area Network” (CAN) efficiently supports distributed realtime control in automotive applications. In order to unload CPUs from high-speed message transfer, dedicated CAN hardware handles messages up to the communication object level. In multiplex wiring message rates are one to two orders of magnitude lower, allowing to implement the upper communication level more cost-effectively in software. This reduces CAN interface hardware to bitwise protocol handling only. It may be incorporated even into low-end microcontrollers without significantly increasing chip size. Thus the same CAN protocol supports the entire range of serial automotive communication, matching implementation costs to requirements at each performance level.
Technical Paper

J2716 SENT - Single Edge Nibble Transmission, Updates and Status

2011-04-12
2011-01-1034
The SAE J2716 SENT (Single Edge Nibble Transmission) Protocol has entered production with a number of announced products. The SENT protocol is a point-to-point scheme for transmitting signal values from a sensor to a controller. It is intended to allow for high resolution data transmission with a lower system cost than available serial data solution. The SAE SENT Task Force has developed a number of enhancements and clarifications to the original specification which are summarized in this paper.
Technical Paper

Wireless Vehicle to Vehicle Warning System

2000-03-06
2000-01-1307
To satisfy the increasing demand for automotive safety a warning system (WARN) to support drivers has been developed. The basic idea is to transmit safety-related information from one vehicle to surrounding vehicles by direct wireless communication. To ensure user-acceptance of the system different strategies have been developed in order to provide only relevant information to a specific driver. The strategies rely on a comparison of the received alert messages with the current driving situation. Simulations show a significant safety-improvement due to the system if at least 10 percent of all vehicles are equipped with the system.
Technical Paper

Serial WireRing - High-Speed Interchip Interface

2012-04-16
2012-01-0198
A new high-performance interchip interface, called Serial WireRing, is introduced. It combines technically mature and established methods, whereby Serial WireRing provides a simple, robust and very inexpensive solution to replace the Serial Peripheral Interface (SPI). Serial WireRing uses a daisy chain ring topology, realized by unidirectional point-to-point connections from device to device. Serial WireRing is realized by a simple “wire ring” with CMOS, LVDS, optical or any other suitable signaling, even mixed. Therefore it has a very low pin count. In order to minimize the latency each slave transmits the data that it receives with 1 bit delay only. In order to avoid clock/data skew, the serial data and clock are merged into one bitstream. A corresponding clock is extracted at each receiver by a clock and data recovery circuit, driven by a simple internal oscillator.
X