Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

PSI5 in Powertrain

2012-04-16
2012-01-0938
Among the currently available sensor interfaces for automotive applications, only the PSI5 interface - as standardized in the new 2001 PSI5 V2.0 - meets the rising system requirements, the increased requirements of the new environmental regulations, and the requirements of current functional safety standards. PSI5 not only features the capability to transmit highly accurate sensor data, high EMC robustness, bus capability, and bidirectional communication, but also offers savings in the cable harness and a reduced number of connector pins by using just two wires. It therefore offers enhanced technical functionality at a reasonable cost. To improve the environmental friendliness and sustainable operation of drive concepts, Bosch is also employing sophisticated and cross-linked sensors, actuators and control units. In addition, there is also the need to optimize system functions, weight, construction space and costs.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Using Patterns to Integrate Views in Open Automotive Systems

2001-10-01
2001-01-3396
Automotive product lines promote reuse of software artifacts such as architectures, designs and implementations. System architectures, and especially software architectures, are difficult to create due to the need to support variations. Traditional approaches emphasize the identification and description of generic components, which makes it difficult to support variations among products. The paper proposes an approach for transforming a software architecture to product design through using patterns in a four-way refinement and evolution process. The paper investigates how patterns may be used to verify the conceptual integrity in the view integration procedure to support software sharing in an open automotive system.
Technical Paper

The Computation of Airbag Deployment Times with the Help of Precrash Information

2002-03-04
2002-01-0192
Modern airbag control units are required to compute airbag deployment times with a high degree of precision. Therefore, the crash situation has to be recognized unambiguously, i.e. the goal is to obtain precise information about the relative speed, the barrier and the position of impact. One way of achieving this aim is via the implementation of a precrash sensing system using radar sensors. With these sensors, the relative closing velocity and the time-to-impact can be measured, thereby enabling a precise analysis of the crash situation. In this paper the algorithm for the computation of the airbag deployment decision will be presented.
Technical Paper

Automated Model-Based GDI Engine Calibration Adaptive Online DoE Approach

2002-03-04
2002-01-0708
Due to its high number of free parameters, the new generation of gasoline engines with direct injection require an efficient calibration process to handle the system complexity and to avoid a dramatic increase in calibration costs. This paper presents a concept of specific toolboxes within a standardized and automated calibration environment, supporting the complexity of GDI engines and establishing standard procedures for distributed development. The basic idea is the combination of a new and more efficient online DoE approach with the automatic and adaptive identification of the region of interest in the high dimensional parameter space. This guarantees efficient experimental designs even for highly non-linear systems with often irregularly shaped valid regions. As the main advantage for the calibration engineer, the new approach requires almost no pre-investigations and no specific statistical knowledge.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Improved Occupant Protection through Cooperation of Active and Passive Safety Systems – Combined Active and Passive Safety CAPS

2006-01-03
2006-01-1144
One of the most important aims of the automotive industry is to provide the best possible protection for drivers, passengers and pedestrians. Through their CAPS (Combined Active and Passive Safety) program (see Figure 1), Bosch is developing new functions which help to achieve these goals and contribute to accident mitigation and/or reduction of accident severity. By linking existing active and passive automobile safety systems and extending these by adding systems for monitoring and evaluating the vehicle's environment, the foundation for new safety functions is created. The growing number of airbags in vehicles provides more and better protection against injury for the occupants. In addition, active safety systems such as the ESP® Electronic Stability Program help to prevent an accident occurring in the first place. If these systems are linked together, they can share information and provide even better safety for drivers and passengers through new functions.
Technical Paper

Acceleration Sensor in Surface Micromachining for Airbag Applications with High Signal/Noise Ratio

1996-02-01
960758
Employing novel surface micromachining techniques, a highly miniaturized, robust device has been fabricated. The accelerometer fulfills all requirements of state-of-the-art airbag systems. The present paper reports on the manufacturing and assembly process as well as the performance of the sensor. The capacitive sensing element consists of a moveable proof mass of polysilicon on a single crystalline silicon substrate. A lateral acceleration displaces the proof mass and a capacitive signal is generated at a comb electrode configuration. An external IC circuit provides the signal evaluation and conditioning in a closed loop mode, resulting in low temperature dependency of sensor characteristics and a wide frequency response. The sensor is fabricated by standard IC processing steps combined with additional surface micromachining techniques. A special deposition process in an epitaxial reactor allows the fabrication of moveable masses of more than 10 µm thickness.
Technical Paper

System Architecture and Algorithm for Advanced Passive Safety by Integration of Surround Sensing Information

2005-04-11
2005-01-1233
Surround sensing methods provide information which can be used in PRECRASH functionalities for advanced control of the passenger protection system. The relevant data (closing velocity (cv), time to impact (tti), and offset of contact point (Δy)) are determined with a Predictive Safety System and transmitted to the airbag control unit for further processing in the PRECRASH algorithm. The PRECRASH algorithm controls both, the activation of reversible restraints and the deployment of irreversible restraints. Therefore it consists of two components: The PREFIRE and the PRESET algorithm. The PREFIRE algorithm uses the PRECRASH information for the activation of the reversible belt pretensioner in advance of a crash to reduce chest load in the crash phase. The PRESET algorithm calculates the trigger decision for deployment of pyrotechnical restraints. Inputs of the PRESET algorithm are the PRECRASH information as well as the acceleration signal.
Technical Paper

IMEP-Estimation and In-Cylinder Pressure Reconstruction for Multicylinder SI-Engine by Combined Processing of Engine Speed and One Cylinder Pressure

2005-04-11
2005-01-0053
In order to optimize the performance and emission of engines, advanced control and diagnostic systems require detailed feedback information about the combustion process. In this context, cost-effective solutions are of interest. The contribution describes a method for reconstructing cylinder-individual features of each combustion cycle by processing the instantaneous fluctuations of the engine speed and the in-cylinder pressure of one cylinder. Model-based torque estimation, analyzing both of the signals simultaneously, provides an accurate estimation of the mean indicated pressure. Using this method, a new algorithm for advanced misfire detection is presented. Furthermore, a new pressure model with a feasible number of parameters is proposed. It is combined with the torque estimation in order to reconstruct the unknown pressure traces of the cylinders not equipped with sensors.
Technical Paper

Automotive Application of Biometric Systems and Fingerprint

2000-03-06
2000-01-0171
Until now, the use of biometric systems has not been in the public eye. The high cost of sensors and processing has meant that biometrics was previously restricted to high security access, financial transaction and law enforcement applications. However, as a result of improvements in technology, biometric sensor price and reliability have achieved levels where biometrics is being seriously considered for automotive systems. This paper introduces the field of biometrics, the key terms and processes. Fingerprint Technology and Identification by Fingerprint are discussed, as are the use and applicability of biometrics in automotive applications, including Personal Profiling, Keyless Engine Start and vehicle access authorization. The key findings of investigations over the last years are discussed.
X