Refine Your Search

Topic

Search Results

Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Coefficients of Restitution for Low and Moderate Speed Impacts with Non-Standard Impact Configurations

2001-03-05
2001-01-0891
There have been a number of papers written about the dynamic effects of low speed front to rear impacts between motor vehicles during the last several years. This has been an important issue in the field of accident analysis and reconstruction because of the frequency with which the accidents occur and the costs of injuries allegedly associated with them. Several of these papers have discussed the importance of the coefficient of restitution in the accelerations and speed changes that the vehicles undergo in such impacts. These discussions often include data showing the measured restitution for impacts involving various bumper types and closing speeds. However, in most of these studies, the impacts are controlled so that direct bumper to bumper impacts occur. This paper will present the results of several rear impact tests with non-standard impact configurations.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Large truck crash data collection

2001-06-04
2001-06-0159
The National Highway Safety Administration (NHTSA) is collecting crash data relating to large trucks. Two data collection programs are specified. One is a crash causation study to investigate the cause of fatal and serious large truck crashes over two years. The other study is a continuous effort collecting data on large truck motor carrier crashes in each state, as coded on police accident reports.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

Hardware Evaluation of Heavy Truck Side and Rear Object Detection Systems

1995-02-01
951010
This paper focuses on two types of electronics-based object detection systems for heavy truck applications: those sensing the presence of objects to the rear of the vehicle, and those sensing the presence of objects on the right side of the vehicle. The rearward sensing systems are intended to aid drivers when backing their vehicles, typically at very low “crawl” speeds. Six rear object detection systems that were commercially available at the time that this study was initiated were evaluated. The right side looking systems are intended primarily as supplements to side view mirror systems and as an aid for detecting the presence of adjacent vehicles when making lane changes or merging maneuvers. Four side systems, two commercially available systems and two prototypes, were evaluated.
Technical Paper

Improving Occupant Protection Systems in Frontal Crashes

1996-02-01
960665
In the United States, air bags will be required in all passenger cars and light trucks under Federal Motor Vehicle Safety Standard (FMVSS) No. 208, Occupant Crash Protection. Even after full implementation of driver and passenger air bags as required by FMVSS No. 208, frontal impacts will still account for up to 8,000 fatalities and 120,000 moderate to critical injuries (i.e., injuries of AIS ≥ 2) [1]. The National Highway Traffic Safety Administration (NHTSA) has an ongoing research program to address these fatalities and injuries and provide a basis for the possible future upgrade of FMVSS No. 208. This effort includes developing supplementary test procedures for the evaluation of occupant injury in higher severity crashes, developing improved injury criteria including criteria for assessing injuries to additional body regions, and evaluating the injuries associated with occupant size [2, 3 and 4].
Technical Paper

Where Have We Been - Where Are We Going?

1979-02-01
790011
This paper reviews some of the progress that has been made in recent years in the transportation field by behavioral scientists and human factors engineers. The major areas covered are public transportation systems, railroad systems, highway systems, and personal transportation systems. The report suggests what future problems may be encountered in these areas that will need the attention of human factors specialists.
Technical Paper

Evaluation of the Effectiveness of Child Safety Seats in Actual Use

1983-10-17
831656
A comprehensive review of casualty-reducing effectiveness estimates of child safety seats in actual use, obtained by statistical analyses of highway accident data. Recent analyses of large samples of New York and Maryland accidents show statistically significant injury reductions for child safety seats; so does a new analysis of the National Highway Traffic Safety Administration's accident files. Results from Washington State, Tennessee, New Jersey, and Idaho are also reviewed, as are Nationwide restraint usage and fatality trends. The findings are critically examined for possible data biases. It is concluded that child safety seats definitely reduce deaths and injuries in highway crashes, but that their effectiveness cannot be accurately estimated at this time because of inconsistencies and possible biases in the various studies.
Technical Paper

CRASH 3: Current Status

1987-04-01
870040
The computer program, CRASH 3, uses the equations of motion to estimate the changes in velocity of motor vehicles in crashes and their trajectories following a collision. It was developed in the mid-1970's by McHenry at Caispan for use in accident research. There are important limitations on where and how it should be used. CRASH 3 requires a skilled reconstruction of a crash and an interactive execution of the program to provide reasonably accurate results. The paper also discusses the sensitivity of CRASH 3 to various parameters and the potential for improving it. This paper presents the views of its author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Vehicle and Occupant Response in Heavy Truck to Car Low-Speed Rear Impacts

1997-02-24
970120
Despite efforts by industry to reduce the problem of injury in rear impacts, there continues to be a large number of such claims. This is true even in low speed impacts which result in little or no damage to the vehicles involved. Recent studies of such incidents have been described in the literature. These studies have concentrated primarily on simple bumper to bumper impacts where the front bumper of the striking vehicle contacts the rear bumper of the struck vehicle. Perhaps a more common type of rear impact is one in which the bumper of the striking vehicle rides over or under the rear bumper of the struck vehicle. The heavy truck to car rear impact is an example of an overriding impact. This paper describes several staged impacts of this type in which vehicle and occupant responses were measured using fully instrumented Hybrid III dummies or human volunteers.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

An Overview of the National Highway Traffic Safety Administration’s Light Vehicle Antilock Brake Systems Research Program

1999-03-01
1999-01-1286
This paper presents an overview of currently ongoing research by the National Highway Traffic Safety Administration (NHTSA) in the area of light vehicle (passenger cars and light trucks) Antilock Brake Systems (ABS). This paper serves as a lead-in to other papers that will be presented during this session. Several statistical crash data studies have found there to be little or no net safety benefit from the implementation of four-wheel ABS on passenger automobiles. Typically, these studies have found ABS to be associated with: 1. A statistically significant decrease in multi-vehicle crashes. 2. A statistically significant decrease in fatal pedestrian strikes. 3. A statistically significant increase in single-vehicle road departure crashes. The safety disbenefit due to the third finding approximately cancels the safety benefits from the first two findings.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

NHTSA’s Vehicle Compatibility Research Program

1999-03-01
1999-01-0071
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the crash compatibility of passenger cars, light trucks and vans (LTV’s) in vehicle-to-vehicle collisions. NHTSA has conducted a series of eight full-scale vehicle-to-vehicle crash tests to evaluate vehicle compatibility issues. Tests were conducted using four bullet vehicles representing different vehicle classes striking a mid-size sedan in both side and oblique frontal crash configurations. The test results show a good correlation between vehicle aggressivity metrics and injury parameters measured in the struck car for the frontal offset tests, but not for the side impact tests.
X