Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 2

2020-04-14
2020-01-0314
The present investigation expands on our previous work on development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. In part 1, the steady state experimental investigation in a single cylinder GCI engine indicate an optimum strategy for effective catalyst light off during cold start fast idle operation. According to this strategy, the strategy includes (1) dispersing a first fuel injection during the intake stroke, (2) dispersing a second fuel injection during the expansion stroke, and (3) igniting a spark during the expansion stroke. This strategy increases the exhaust temperature during cold starts thereby assisting in lighting the oxidation catalyst, and reduce emissions and provide greater combustion stability as compared to other injection and spark strategies.
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 1

2020-04-14
2020-01-0316
The present investigation pertains to the development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. The engine cold start fast idle operation poses a problem of increased criteria emissions if the catalyst is not activated during the warm up period. Therefore, a control strategy is proposed here to minimize the criteria pollutants during the fast idle phase via enabling fast catalyst light off in a GCI engine and relying on the spark ignition of a globally stoichiometric fuel air mixture. The engine has unique design features such as certain geometry configuration between spark plug and fuel injector arrangement, and the location of spark plug in a high compression ratio (CR) diesel-like combustion chamber. The experiments were performed in a single cylinder GCI engine at cold start fast idle conditions using certification gasoline fuel (RON 91).
Technical Paper

Optical Study on the Fuel Spray Characteristics of the Four-Consecutive-Injections Strategy Used in High-Pressure Isobaric Combustion

2020-04-14
2020-01-1129
High-pressure isobaric combustion used in the double compression expansion engine (DCEE) concept was proposed to obtain higher engine brake thermal efficiency than the conventional diesel engine. Experiments on the metal engines showed that four consecutive injections delivered by a single injector can achieve isobaric combustion. Improved understanding of the detailed fuel-air mixing with multiple consecutive injections is needed to optimize the isobaric combustion and reduce engine emissions. In this study, we explored the fuel spray characteristics of the four-consecutive-injections strategy using high-speed imaging with background illumination and fuel-tracer planar laser-induced fluorescence (PLIF) imaging in a heavy-duty optical engine under non-reactive conditions. Toluene of 2% by volume was added to the n-heptane and served as the tracer. The fourth harmonic of a 10 Hz Nd:YAG laser was applied for the excitation of toluene.
Technical Paper

Optical Diagnostics of Isobaric and Conventional Diesel Combustion in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0418
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve higher thermal efficiency while lowering heat transfer losses and nitrogen oxides (NOx). However, isobaric combustion suffers from higher soot emissions. While the aforementioned trends are well established, there is limited literature about the high-temperature reaction zones, the liquid-phase penetration distance, and the flame tip propagation velocity of isobaric combustion. In the present study, the line-of-sight integrated imaging of Mie-scattering, combustion luminosity, and CH* chemiluminescence were conducted in an optically accessible single-cylinder heavy-duty diesel engine. The engine was equipped with a flat-bowl-shaped optical piston to allow bottom-view imaging of the combustion chamber. The experiments were conducted using n-heptane fuel for CDC and isobaric combustion modes.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
Technical Paper

Optical Diagnostics of Pre-Chamber Combustion with Flat and Bowl-In Piston Combustion Chamber

2021-04-06
2021-01-0528
Pre-chamber Combustion (PCC) extends the lean operation limit operation of spark ignition (SI) engines, thus it has been of interest for researchers as a pathway for increased efficiency and reduced emissions. Optical diagnostic techniques are essential to understand the combustion process, but the engine components such as the piston geometry, are often different from real engines to maximize the optical access. In this study, ignition and subsequent main chamber combustion are compared in an optically accessible PCC engine equipped with a “flat” and a real engine-like “bowl” piston geometry. An active fueled narrow throat pre-chamber was used as the ignition source of the charge in the main-chamber, and both chambers were fueled with methane. Three pre-chamber fuel effective mean pressure (FuelMEP) ratios (PCFR) namely 6%, 9% and 11% of the total amount of fuel were tested at two global excess air ratios (λ) at values of 1.8 and 2.0.
Journal Article

Study on the Pre-Chamber Fueling Ratio Effect on the Main Chamber Combustion Using Simultaneous PLIF and OH* Chemiluminescence Imaging

2020-09-15
2020-01-2024
Pre-chamber combustion (PCC) enables leaner air-fuel ratio operation by improving its ignitability and extending flammability limit, and consequently, offers better thermal efficiency than conventional spark ignition operation. The geometry and fuel concentration of the pre-chamber (PC) is one of the major parameters that affect overall performance. To understand the dynamics of the PCC in practical engine conditions, this study focused on (i) correlation of the events in the main chamber (MC) with the measured in-cylinder pressure traces and, (ii) the effect of fuel concentration on the MC combustion characteristics using laser diagnostics. We performed simultaneous acetone planar laser-induced fluorescence (PLIF) from the side, and OH* chemiluminescence imaging from the bottom in a heavy-duty optical engine. Two different PC Fueling Ratios (PCFR, the ratio of PC fuel to the total fuel), 7%, and 13%, were investigated.
Technical Paper

The Effects of Piston Shape in a Narrow-Throat Pre-Chamber Engine

2022-08-30
2022-01-1059
The current work utilizes computational fluid dynamics (CFD) simulations to assess the effects of different piston geometries in an active-type pre-chamber combustion engine fueled with methane. Previous works identified that the interaction of the jets with the main chamber flow and piston wall are key aspects for the local turbulent flame speed and overall burning duration. The combustion process is simulated with the G-equation model for flame propagation combined with the MZ-WSR model to determine the post-flame composition and to predict possible auto-ignition of the reactant mixture. Four setups were considered: two bowl-shaped and one flat piston, and one additional case of the flat piston with jets at wider jet angles to the cylinder axis. The results show that premature jet-wall interaction impacts the main chamber pressure build-up, turbulence, and burn rate.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
X