Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
X