Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

A Study of Emissions Reduction through Dual-Fuel Combustion with Propane in a Compression Ignition Engine

2013-10-14
2013-01-2669
Novel Diesel combustion concepts such as premixed charge compression ignition (PCCI) and reactivity controlled compression ignition (RCCI) promise lower NOx and PM emissions than those of conventional Diesel combustion. RCCI, which can be implemented using low-reactivity fuels such as gasoline or gases and high-reactivity fuels such as Diesel, has the potential to achieve extremely low emissions and improved thermal efficiency. However, to achieve RCCI combustion, a higher boost pressure than that of a conventional engine is required because a high EGR rate and a lean mixture are necessary to achieve a low combustion temperature. However, higher boost pressures can cause damage to intake systems. In this research, the addition of gaseous fuel to a CI engine is investigated to reduce engine emissions, mainly NOx and PM emissions, with the same IMEP level. Two different methods were evaluated.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Characteristics of Diesel Engine Noise According to EGR Rate Change during Transient Operation

2015-06-15
2015-01-2296
Diesel engine noise is classified into mechanical noise, flow dynamic noise and combustion noise. Among these, combustion noise level is higher than the others due to the high compression ratio of diesel combustion and auto ignition. The injected fuel is mixed with air in the ignition delay process, followed by simultaneous ignition of the premixed mixture. This process results in a rapid pressure rise, which is the main source of combustion noise. The amount of fuel burned during premixed combustion is mainly affected by the ignition delay. The exhaust gas recirculation (EGR) rate has an impact on ignition delay, and thus, it influences the combustion noise characteristics. Therefore, during the transient state, the combustion noise characteristics change as the EGR rate deviates from the target value. In this study, the effect of the EGR rate deviation during the transient state of the combustion noise is examined. A 1.6 liter diesel engine with a VGT was used for the experiment.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Technical Paper

An Investigation into the Operating Strategy for the Dual-Fuel PCCI Combustion with Propane and Diesel under a High EGR Rate Condition

2015-04-14
2015-01-0854
In this work, the operating strategy for diesel injection methods and a way to control the exhaust gas recirculation (EGR) rate under dual-fuel PCCI combustion with an appropriate ratio of low-reactivity fuel (propane) to achieve high combustion stability and low emissions is introduced. The standards of combustion stability were carbon monoxide (CO) emissions below 5,000 ppm and a CoV of the indicated mean effective pressure (IMEP) below 5 %. Additionally, the NOx emissions was controlled to not exceed 50 ppm, which is the standard of conventional diesel combustion, and PM emissions was kept below 0.2 FSN, which is a tenth of the conventional diesel value without a diesel particulate filter (DPF). The operating condition was a low speed and load condition (1,500 rpm/ near gIMEP of 0.55 MPa).
X