Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of Driving Control System Based on Optimal Distribution for a 6WD/6WS Vehicle

2010-04-12
2010-01-0091
This paper describes a driving controller to improve vehicle lateral stability and maneuverability for a six wheel driving / six wheel steering (6WD/6WS) vehicle. The driving controller consists of upper and lower level controller. The upper level controller based on sliding control theory determines front, middle steering angle, additional net yaw moment and longitudinal net force according to reference velocity and steering of a manual driving, remote control and autonomous controller. The lower level controller takes desired longitudinal net force, yaw moment and tire force information as an input and determines additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and has considered the friction circle related to vertical tire force and friction coefficient acting on the road and tire.
Journal Article

Design and Evaluation of Emergency Driving Support Using Motor Driven Power Steering and Differential Braking on a Virtual Test Track

2013-04-08
2013-01-0726
This paper presents the design and evaluation of an emergency driving support (EDS) algorithm. The control objective is to assist driver's collision avoidance maneuver to overcome a hazardous situation. To support driver, electrically controllable chassis components such as motor driven power steering (MDPS) and differential braking and surrounding sensor systems such as radar and camera are used. The EDS algorithm is designed for 3 parts: monitoring, decision, and control. The proposed EDS algorithm recognizes a collision danger using minimum lateral acceleration to avoid collision and time-to-collision (TTC) and driver's intention using sensor systems. The control mode is determined using the indices from monitoring process and the collision avoidance trajectory is derived with trapezoidal acceleration profile (TAP).
Technical Paper

Correlation of Subjective and Objective Measures of On-Center Handling

2014-04-01
2014-01-0128
This paper presents a methodology of correlation between subjective and objective measures of vehicle on-center handling performance. The subjective measure is a professional test driver's rating of vehicle handling, while the objective measure assesses the handling performance via vehicle dynamic responses. Vehicle test data obtained from field testing has been analyzed to investigate links between the objective and subjective measures. Fifty-six physical parameters have been derived from on-centering hysteresis curves. Statistical tools are employed to obtain good correlation between driver rating and physical parameters. Using an interaction formula, a statistical model which relates the driver rating and principal physical parameters has been obtained. The proposed methodology will be used to show the physical parameters influence on subjective assessment and even to predict the subjective assessment of a vehicle handling performance.
X