Refine Your Search

Topic

Search Results

Journal Article

Lateral Control for Automated Vehicle Following System in Urban Environments

2014-04-01
2014-01-0161
In contrast to highway, there are some sections not well maintained in urban roads. In these sections, there may be faint lane marks or static obstacles due to construction or some other reasons. Therefore, an automated vehicle following system such as traffic jam assistant should consider these sections to guarantee the safety of the system. In order to achieve this purpose, a model predictive control (MPC) scheme has been developed. The objectives of MPC are to compute the sequence of optimal steering input for vehicle following with obstacle avoidance. For this, the MPC uses the lead vehicle's state and obstacle's position obtained by lidars. For this purpose, a simplified nonlinear model of the vehicle was used to predict the future evolution of the system. Based on this prediction, performance index is optimized under operating constraints at each time step. A test vehicle equipped with two lidars on left and right corner of the front bumper has been developed.
Technical Paper

Prediction of Hybrid Electric Bus Speed Using Deep Learning Method

2020-04-14
2020-01-1187
The recent development pace of the automotive technology is so rapid worldwide. Especially in a green car, hybrid electric vehicles (HEVs) have been studied a lot due to their significant effects on the urban driving. In the vehicle energy management strategy study, the driving speed is assumed to be known in advance, however the speed is not given in a real world. Accordingly, the prediction of vehicle speed is very important. In this study, we study the prediction methodology for the speed prediction using deep learning. Based on the vehicle driving speed data, the supervised deep learning has been used and the speed prediction accuracy using deep learning shows accurate results comparing to the actual speed. The supervised deep learning is used which is suitable for driving cycle database. As a result, the speed prediction after few seconds is feasible.
Journal Article

Control Analysis and Thermal Model Development for Plug-In Hybrid Electric Vehicles

2015-04-14
2015-01-1157
For electrified vehicles, understanding the impact of temperature on vehicle control and performances becomes more important than before because the vehicle might consume more energy than conventional vehicles due to lack of the engine waste heat. Argonne has tested many advanced vehicles and analyzed the vehicle level control based on the test data. As part of its ongoing effort, Toyota Prius Plug-in Hybrid was tested in thermal environmental chamber, and the vehicle level control and performances are analyzed by observing the test results. The analysis results show that the control of the Plug-in Hybrid Electric Vehicle (PHEV) is similar with Prius Hybrid Electric Vehicle (HEV) when the vehicle is under a charge sustaining mode, and the vehicle tries to consume the electric energy first under a charge depleting mode.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Technical Paper

Three Types of Simulation Algorithms for Evaluating the HEV Fuel Efficiency

2007-04-16
2007-01-1771
In regard to the evaluation of the performance of a hybrid electric vehicle (HEV), there are as many simulation methods as there are developers or researchers. They adopt different operational algorithms and they use diverse techniques to realize their logic. However, the relation among the various simulation methods has not been clearly defined. Thus, it is not easy to choose a method that would bring the best consequences in the most efficient way. Here, we present three types of backward-looking simulation algorithms for evaluating the fuel efficiency of a power-split HEV. Then the results and cost-effectiveness of each algorithm are analyzed using various component ratings over a representative driving mode. Based on the comparative analysis, the algorithm that uses equivalent fuel consumption is shown to be highly cost-effective. Also, an inductive or empirical base is set up with the results for a component sizing methodology using the recommended simulation.
Technical Paper

A Screening Attenuation Evaluation Method for HEV Power Cable

2008-04-14
2008-01-1476
This paper proposes a new screening attenuation evaluation method (PHSA) for hybrid power cables. Hybrid power cables connect battery, inverter and motor. As the noise and shield characteristics of these cables are different from general communication shield wires, new method for evaluating screening attenuation is needed. We considered the radiation direction, noise current path and various load terminations to evaluate the screening attenuation which is different from standard screening attenuation measurement. Feasibility and effectiveness of the proposed method were verified with real experiment results.
Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
Technical Paper

An Investigation into Unified Chassis Control based on Correlation with Longitudinal/Lateral Tire Force Behavior

2009-04-20
2009-01-0438
This paper presents a Unified Chassis Control (UCC) strategy to improve vehicle stability and maneuverability by integrating Electronic Stability Control (ESC) and Active Front Steering (AFS). The UCC architecture consists of two parts: an estimator and a controller. The estimator is designed to estimate longitudinal and lateral tire forces and the controller is designed in two stages, namely, an upper level controller and a lower level controller. The upper level controller, provides the desired yaw moment for vehicle lateral stability by adopting a sliding control method. The lower level controller, provides the integration method of the AFS and ESC strategies for the desired yaw moment and is designed by optimal tire force coordination.
Technical Paper

Model Predictive Control based Automated Driving Lane Change Control Algorithm for Merge Situation on Highway Intersection

2017-03-28
2017-01-1441
This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Implementation of the DADI Method into the Droplet Equation for Efficient Aircraft Icing Simulation

2023-06-15
2023-01-1465
Diagonalized alternating-direction implicit (DADI) method is implemented in the Eulerian hyperbolic droplet solver, ICEPAC, for efficient high-order accurate analysis of aircraft icing. Detailed techniques for implementing the DADI method considering hyperbolicity characteristics are discussed. For the Eulerian droplet equation system to be strictly hyperbolic, additional source terms regarding artificial droplet pressure are included. Validations of the present implicit solver are conducted using two- and three-dimensional steady benchmark tests: NACA0012 airfoil, NACA23012 airfoil, and a swept wing. Also, the oscillating airfoil SC2110 case was analyzed to verify the robustness and efficiency of the proposed solver. In addition, the computational cost of the current implicit solver is considerably lower than that of the explicit multi-stage solver.
Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Technical Paper

Data-driven Trajectory Planning of Lane Change Maneuver for Autonomous Driving

2023-04-11
2023-01-0687
This paper presents a methodology of trajectory planning for the surrounding-aware lane change maneuver of autonomous vehicles based on a data-driven method. The lateral motion is planned by sampling candidate patterns which are defined based on quintic polynomial functions over time. Based on the cost evaluation among the sampled candidates, the optimal lateral motion pattern is selected as a reference and tracked by the controller. The longitudinal motion is planned and controlled using Model Predictive Control (MPC) which is an optimal control method designed considering the surrounding traffic information. To realize the lane change motion similar to the human driving behavior in the surrounding traffic situation, the human driving pattern is modeled in the form of motion parameters and considered in planning the lateral and longitudinal motion.
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

2019-04-02
2019-01-0445
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Technical Paper

Rear-Wheel Steering Control for Enhanced Maneuverability of Vehicles

2019-04-02
2019-01-1238
This paper proposes a rear-wheel steering control method that can modify and improve the vehicle lateral response without tire model and parameter. The proposed control algorithm is a combination of steady-state and transient control. The steady state control input is designed to modify steady-state yaw rate response of the vehicle, i.e. understeer gradient of the vehicle. The transient control input is a feedback control to improve the transient response when the vehicle lateral behavior builds up. The control algorithm has been investigated via computer simulations. Compared to classical control methods, the proposed algorithm shows good vehicle lateral response such as small overshoot and fast response. Specifically, the proposed algorithm can alleviate stair-shaped response of the lateral acceleration.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Technical Paper

High-Definition Map Based Motion Planning, and Control for Urban Autonomous Driving

2021-04-06
2021-01-0098
This paper presents motion planning and control algorithm for urban automated driving using high-definition(HD) map. Many automakers have developed and commercialized advanced driver assistance system(ADAS) based on vision-only lane extraction in motorway environments. Compared to the motorway environments where the lane is continuous and clearly visible, however, in urban roads, degradation of the lane quality such as lane occlusion and lane loss occurs frequently. This leads to the poor quality of the local guide path for the autonomous vehicles with vision-only lane extraction. Global HD map is used to provide the lane information continuously instead of vision-only lane extraction. With the existence of global position of host vehicle and the HD map, the proposed sequential algorithm performs the lane keeping and lane changing decision and control with safety margin in multi-vehicle situation.
Technical Paper

Development of Fault Detection and Emergency Control for Application to Autonomous Vehicle

2021-04-06
2021-01-0075
This paper describes a failsafe system of automated driving vehicles. The failsafe system consists of the following two parts: sliding mode observer-based environment sensor, chassis sensor fault detection, and emergency deceleration control. Two sliding mode observers are designed to reconstruct the fault of acceleration and environment sensor(Lidar) in a longitudinal direction. In the environment sensor's fault detection part, the longitudinal vehicle model receives clearance and relative velocity values. Therefore, failure diagnosis is possible regardless of environmental sensors, such as radar, lidar, and camera. This paper's sensor data is the failure of Delphi's Electronically Scanning Radar (ESR) and Ibeo's LUX Lidar installed in an autonomous vehicle. The emergency deceleration control algorithm employs the sliding mode control with adaptive convergence time. In the event of a failure, it is significant to control the vehicle within a short period safely.
X