Refine Your Search

Topic

Search Results

Technical Paper

Influence of Distributing Channel Configuration and Geometric Parameters on Flow Uniformity in Straight Flow-Field of PEM Fuel Cell

2020-04-14
2020-01-1173
Gas distribution of proton exchange membrane fuel cells (PEMFCs) is mainly decided by flow field of bipolar plate. The improper design of distributing channel, nonuniform gas flow distribution and current density distribution among different straight channels are the leading factors that could tremendously undermine the performance and life expectancy of the cell. However, there is lack of research focusing on distributing channel in straight-parallel flow field. In this work, a three-dimensional numerical model of PEMFC cathode flow field is developed with CFD method to investigate the effects of configuration type and width of the distributing channel on pressure distribution in distributing channel and on reactant flow distribution, pressure drop and concentration distribution in multiple straight channel. Effects of electrochemical reaction and formation of water on the flow distribution are taken into consideration.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

Finite Element Analysis on Multi-Layer-Steel Cylinder Head Gaskets

2016-04-05
2016-01-1381
Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
Technical Paper

Finite Element Analysis of Cylinder Gasket under Cylinder Pressure and Structural Optimization of the Cylinder Gasket

2017-03-28
2017-01-1080
This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
Technical Paper

Investigation of Scavenging Process for Steady-State Operation of a Linear Internal Combustion Engine-Linear Generator Integrated System

2017-03-28
2017-01-1087
The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
Technical Paper

Numerical Investigation of Jet-Wake and Secondary Flows in a Hydrodynamic Torque Converter

2017-03-28
2017-01-1335
Jet-wake flow and secondary flows are undesirable in torque converters as they are responsible for flow losses and flow nonuniformity; that is, jet-wake flow and secondary flows negatively affect the torque converter performance. Therefore, it is very important to investigate and minimize the undesirable flows to decrease flow losses in torque converter. However, the existing studies are limited to employ geometry design parameter modifications rather than focusing on the actual causes and intrinsic physical mechanism that generate the flows to reduce the flow losses. In this paper, Calculation model of a torque converter is presented first and a three dimensional CFD code was used to simulate the internal flow field of a torque converter. The simulation results coincide with experimental measurements, which verifies the validity of the method. Based on flow field calculation results, the internal flow field of impeller, turbine and stator were analyzed, respectively.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

Effect of a Perforated Resonator on the Flow Performances of the Turbocharged Intake System for a Diesel Engine

2018-04-03
2018-01-0678
The flow issues of the turbocharged intake system for a diesel engine are mainly introduced in this work and the effects of a multi-chamber perforated resonator which can efficiently attenuate broadband noise and has compact structure on the flow performances of the intake system is analyzed by contrast. Based on the acoustic grid resulting from pre-processing of 3D models for finite element analysis, a computational fluid dynamics flow simulation comparative analysis between the intake systems with and without a resonator including pressure and velocity distribution is conducted with the software Star-CCM+. The simulation results indicate that the air pressure drop of the intake system with a resonator is slightly higher than that of the intake system without a resonator but it is still relatively low compared with that of the entire intake system.
Technical Paper

Optimal Study on the TL of Automotive Door Sealing System Based on the Interior Speech Intelligibility

2018-04-03
2018-01-0672
Wind noise becomes the foremost noise source when a car runs at high speeds. High frequency characteristics of wind noise source and effective performance of seal rubbers for insulating leakage noise make research on the Transmission Loss (TL) of automotive door sealing systems significant. The improvement of TL of automotive door sealing system could effectively decrease the interior noise due to wind noise for vehicles at high speeds. In this study, compression simulation of seal rubbers for an automotive door is performed through a Finite Element (FE) tool firstly. Compressed geometries of the seal rubbers are obtained. Then, based on the final compressed geometries and pre-stress modes of the automotive door seal rubbers, the TL of the whole door sealing system is acquired by hybrid Finite Element - Statistic Energy Analysis (FE-SEA) method. The fluctuating surface pressure on a car body was captured by a Computational Fluid Dynamics (CFD) tool.
Technical Paper

Development of Composite Brake Pedal Stroke Simulator for Electro-Hydraulic Braking System

2014-04-01
2014-01-0117
A brake pedal stroke simulator for Electro-hydraulic Braking System (EHBS) was developed to ensure the comfort braking pedal feel for the brake-by-wire system. An EHBS with an integrated master cylinder was proposed, and a composite brake pedal stroke simulator was designed for the EHBS, which was comprised of two inline springs and a third parallel one. A normally closed solenoid valve was used to connect the master cylinder booster chamber and the stroke simulator. The suitable brake pedal stroke was achieved by three stages of these springs' compression, whereas the solenoid valve was shutdown to enable mechanical control of the service brakes when electrical faults appeared.
Technical Paper

Characteristics of Transient NO Emissions Based on the First Firing Cycle Analysis of Cold-Start

2006-04-03
2006-01-1050
The First Firing Cycle (FFC) is very important at cold-start. Misfiring of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. This paper presents an investigation of characteristics of transient NO emissions in a small LPG SI engine with electronic gaseous injection system. To determine the optimal excess air coefficient ( λ=[A/F]/[A/F]stoic) of the first firing cycle, the emission of instantaneous NO was proposed as a useful criterion to judge if the combustion is occurred or not. A fast response NO detector- Cambustion fNOx400, based on the chemiluminescence's (CLD) method, has been employed to measure continuous, transient emissions of NO during the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure, instantaneous crankshaft speed of the engine and engine-out HC emissions were measured and recorded.
Technical Paper

Braking Pressure Tracking Control of a Pressure Sensor Unequipped Electro-Hydraulic Booster Based on a Nonlinear Observer

2018-04-03
2018-01-0581
BBW (Brake-by-wire) can increase the vehicle safety performance due to high control accuracy and fast response speed. As one solution of BBW, the novel Integrated-electro-hydraulic brake system (I-EHB) is proposed, which consists of electro-hydraulic booster and hydraulic pressure control unit. The electro-hydraulic booster is activated by an electric motor that driving linear motion mechanism to directly produce the master cylinder pressure. With electro-hydraulic booster as an actuator, the hydraulic pressure control problem is a key issue. Most literatures deal with the pressure control issue based on the feedback pressure signal measured by pressure sensor. As far as the authors are aware, none of the proposed techniques takes into account the pressure sensor unequipped BBW. In this paper, there is no pressure feedback signal, but there is only position feedback signal measured by position sensor for control law design.
Technical Paper

Acoustic and Aerodynamic Performances of One Phononic Crystal Duct with Periodic Mufflers

2023-04-11
2023-01-0433
The acoustic muffler is one of the practical solutions to reduce the noise in ducts. The acoustic and aerodynamic performances are two critical indices of one muffler for the air intake system of a hydrogen fuel cell electric vehicle (FCEV). In this study, the concept of phononic crystal is applied to design the muffler to obtain superior acoustic performance. One duct with periodic and compact resonator-type mufflers is designed for broadband noise attenuation. The two-dimensional (2D) transfer matrix method and bandgap theory are employed to calculate the transmission loss (TL) and acoustic bandgap. It is numerically and theoretically demonstrated that broadband noise attenuation could be acquired from 500Hz to 3500Hz. Afterwards, the three-dimensional (3D) computational fluid dynamics (CFD) approach is applied to predict the pressure distribution. The results indicate that the proposed hybrid muffler and the phononic crystal duct possess low pressure loss values.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
X