Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Linking the Physical Manifestation and Performance Effects of Injector Nozzle Deposits in Modern Diesel Engines

2015-04-14
2015-01-0892
The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles. During both studies, deposits were compared after fouling and after subsequent cleaning using a novel fuel borne detergent.
Technical Paper

Combustion Chamber Deposit Flaking and Startability Problems in Three Different Engines

2003-10-27
2003-01-3187
A field problem associated with flakes of combustion chamber deposits getting trapped on the exhaust valve seat and causing starting problems has appeared recently. Four fuels have been tested in three different car models using a deposit flaking road test procedure. For each piston top, flaking can be characterised using T1 and T2, the mean deposit thickness on the piston crown before and after flaking respectively. A new measure of deposit flaking, ΔT, the mean of (T1-T2) averaged over all cylinders has been introduced and its variance established for the standard test using one of the models. ΔT quantifies the actual amount of deposits that have flaked and is likely to be a more relevant indicator of flaking for startability problems than Rw, the mean of the ratio of T2 to T1, used in previous work. Deposit flaking is directly related to an increase in valve leakage rates and startability problems.
Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
Technical Paper

ASTM Unwashed Gum and the Propensity of a Fuel to Form Combustion Chamber Deposits

2000-06-19
2000-01-2026
An investigative group set up under the auspices of the CEC (Coordinating European Council) collected data on combustion chamber deposits (CCD), ASTM unwashed gum (UWG) results and the thermogravimetric analysis (TGA) of these gums for different fuels from many different sources. The analysis of this data shows that UWG cannot and does not predict CCD. It is not possible to use UWG or any aspect of its behaviour in the TGA to assess the CCD-forming tendency of randomly chosen fuels.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Combustion Chamber Deposit Flaking

2000-10-16
2000-01-2858
There is increasing concern that small flakes of combustion chamber deposits (CCD) can break lose and get trapped between the exhaust valve and the seat resulting in difficulties in starting, rough running and increase in hydrocarbon emissions. In this paper we describe experimental observations which might explain how this flaking of CCD occurs and the factors that might be important in the phenomenon. The experiments include thirty one engine tests as well as tests done in a laboratory rig and show that some CCD flake when they are exposed to water; indeed water is far more effective in bringing this about than gasoline or other organic solvents. The hydrophilicity of the deposit surface which determines the penetration of water and the inherent susceptibility of the relevant deposit layer to inter-act with water are both important. Consequently there are large differences between deposits produced by different fuels and additives in terms of their susceptibility to flake.
X