Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Heavy Truck Frontal Crash Protection System Development

2007-10-30
2007-01-4289
Heavy trucks are produced with a great variety of vehicle configurations, operate over a wide range of gross vehicle weight and sometimes function in extreme duty environments. Frontal crashes of heavy trucks can pose a threat to truck occupants when the vehicle strikes another large object such as bridge works, large natural features or another heavy-duty vehicle. Investigations of heavy truck frontal crashes indicate that the factors listed above all affect the outcome for the driver and the resulting damage to the truck Recently, a new chassis was introduced for on-highway heavy truck models that feature frontal airbag occupant protection. This introduction presented an opportunity to incorporate the knowledge gained from crash investigation into the process for developing the crash sensor's parameter settings.
Technical Paper

Torque Spike Analysis of an AC Haul Truck Traction System

2000-09-11
2000-01-2627
The mining industry has requested large capacity haul trucks with low maintenance to improve operating costs. To satisfy this request, diesel-electric drive systems have evolved from DC to AC control systems. AC drive technology offers high efficiency, low maintenance costs, and many advanced features over DC and mechanical drive technology. The use of AC inverters introduces the possibility of high current spikes to the motor during a two or three phase short circuit. This failure mode results in a large negative torque being generated in the motor that resonates until the current dissipates. This paper studies the effects of this spike on the electrical and mechanical system covering both analytical and field test results.
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
Technical Paper

Intelligent Braking Management for Commercial Vehicles

2000-12-01
2000-01-3156
The development of electronic intelligence and the continually increasing intensive knowledge of driving dynamics make it possible nowadays to conceive intelligent vehicle systems and to make such systems available for series production, which are capable of substantially enhancing the active safety of commercial vehicles. Through the implementation of advanced subsystems, which can be integrated as software packages into the basic electronic braking system, it will be possible to expand the possibilities of introducing assistance systems, which are capable of both, helping and relieving the driver from stress in critical situations. The driver will be relieved of all duties which could divert his attention or cause severe stress. As a consequence, the active safety of commercial vehicles will be considerably increased.
Technical Paper

“MBE 4000-A New Engine for the US Class 8 Truck Market”

2000-12-04
2000-01-3457
Due to ever soaring fuel costs and even more stringent emission regulations which require more elaborate technical efforts and unfortunately lead to a negative trend on fuel economy as well, todays and future trucking business is extremely challenged. These facts create an urgent requirement for the engine manufacturer to offer an engine with an optimized cost-benefit-ratio for the trucking business. Mercedes-Benz, as the leader in the European commercial vehicle market - of which e. g. high fuel costs, long maintenance intervals and high engine power-to-weight ratios have always been key characteristics - has developed a new class 8 engine for the US market. The MBE 4000 is a 6 cylinder inline engine in the compact size and low weight category, but due to its displacement of 12,8 liters it offers high performance characteristics like heavier big block engines.
Technical Paper

Urea-SCR System Demonstration and Evaluation for Heavy-Duty Diesel Trucks

1999-11-15
1999-01-3722
The Institute of Transportation Studies at the University of California, Davis (ITS-Davis) has brought together a group of public and industrial partners to demonstrate and evaluate the Siemens-Westinghouse Urea-Selective Catalyst Reduction System (SINOx™). The SINOx System has the potential to generate major reductions in nitrogen oxides (NOx) and the volatile organic fraction (VOF) of particulate (PM) from heavy-duty diesel engines, without increasing fuel consumption and carbon dioxide (CO2) emissions. This demonstration began with engine bench testing at Detroit Diesel Corporation to calibrate the system to attain 1 g/bhp-hr NOx emissions in the transient portion of the US-FTP on a 1999 Series 60 engine that has a 4 g/bhp-hr emission level. The second phase of the project entails an on-highway demonstration of a set of ten, Freightliner Class 8 heavy-duty diesel vehicles. These vehicles are part of the Valley Material Transport fleet based in French Camp, California.
X