Refine Your Search

Topic

Search Results

Technical Paper

Modeling and Analysis of Front End Accessory Drive System with Overrunning Alternator Decoupler

2020-04-14
2020-01-0398
The generator is an important loaded component of an engine front end accessory drive system (EFEADS). With a huge moment of inertia and a highest running speed, the vibration and noise often occurs in operation, which has an effect on the service life. Thus an overrunning alternator decoupler (OAD) is used in the EFEADS for reducing the vibration of system. In this paper, a model of EFEADS with an OAD is established. The impact of the OAD on the dynamic responses of pulley of generator and the system are analyzed, and is verified by bench experiments. And the influence of parameters, such as spring stiffness, moment of inertia of generator and loaded torque on the dynamic performances of the system are studied. The influence of misalignment in pulleys on the dynamic performance of system is also discussed. The presented method is useful for optimizing the dynamic performance of system, such as the oscillation of tensioner arm and the slip ratio of the belt-generator pulley.
Technical Paper

Study on Steering Angle Input during the Automated Lane Change of Electric Vehicle

2017-09-23
2017-01-1962
The trajectory planning and the accurate path tracking are the two key technologies to realize the intelligent driving. The research of the steering wheel angle plays an important role in the path tracking. The purpose of this study is to optimize the steering wheel angle input during the automated lane changing. A dynamic programming approach to trajectory planning is proposed in this study, which is expected to not only achieve a quick reaction to the changing driving environment, but also optimize the balance between vehicle performance and driving efficiency. First of all, the lane changing trajectory is planned based on the positive and negative trapezoidal lateral acceleration method. In addition, the multi-objective optimization function is built which includes such indexes: lateral acceleration, lateral acceleration rate, yaw rate, lane changing time and lane changing distance.
Technical Paper

Experiment and Analysis of Mechanical Semi-Active Hydraulic Engine Mount with Double Inertia Tracks

2022-03-29
2022-01-0305
Electromagnetic semi-active hydraulic engine mount (HEM) with double inertia tracks can realize the opening and closing of the inertia tracks through the control of electromagnetic actuator, so as to meet the needs of vibration isolation in different working conditions, but the cost is high. In this paper, without using electromagnetic actuator, a mechanical semi-active HEM with double inertia tracks is designed and manufactured with simple structure and low cost. In this study, the feature of mechanical semi-active HEM with double inertia tracks is that a baffle-current limiting column structure is added in the inertia track. Under different excitation amplitudes, the baffle-current limiting column structure can open and close the inertia track passively. Several mechanical semi-active HEM with double-inertia tracks samples and conventional inertia tracks HEM samples are manufactured and the dynamic characteristics of these samples under low frequency excitation are tested.
Technical Paper

Event-Triggered Adaptive Robust Control for Lateral Stability of Steer-by-Wire Vehicles with Abrupt Nonlinear Faults

2022-07-04
2022-01-5056
Because autonomous vehicles (AVs) equipped with active front steering have the features of time varying, uncertainties, high rate of fault, and high burden on the in-vehicle networks, this article studies the adaptive robust control problem for improving lateral stability in steer-by-wire (SBW) vehicles in the presence of abrupt nonlinear faults. First, an upper-level robust H∞ controller is designed to obtain the desired front-wheel steering angle for driving both the yaw rate and the sideslip angle to reach their correct values. Takagi-Sugeno (T-S) fuzzy modeling method, which has shown the extraordinary ability in coping with the issue of nonlinear, is applied to deal with the challenge of the changing longitudinal velocity. The output of the upper controller can be calculated by a parallel distributed compensation (PDC) scheme.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Research on Brake Comfort Based on Brake-by-Wire System Control

2022-03-29
2022-01-0912
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established.
Technical Paper

Two-Level LPV Model Based Sliding Mode Predictive Control with Actuator Input Delay for Vehicle Yaw Stability

2022-03-29
2022-01-0905
For the improvement of the vehicle yaw stability, this paper studies the control problem of the active front steering (AFS) system with actuator input delay. A novel sliding mode predictive control method to handle actuator input delay is proposed for the AFS system. Firstly, considering the nonlinearities of the vehicle system, a linear parameter varying vehicle system model with two-level structure is proposed to capture the vehicle dynamic behaviors. Secondly, to deal with the issues of actuator input delay and system constraints, a novel sliding mode predictive control method is put forward. In the process of controller design, a sliding mode control algorithm is employed for the improvement of the robustness of the control system, and then a model predictive control algorithm is employed to deal with system constraints.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Study on Flow Rate and Flow Field Characteristics of Gerotor Pump with Multi-arc Combined Profile

2022-03-29
2022-01-0632
The working principle and performance test method of the gerotor pump with multi-arc combined profile are introduced. According to the formation method of the rotor tooth profile, the calculation method of the inner rotor tooth profile is introduced, and the meshing characteristics of the inner and outer rotors are analyzed. On this basis, a calculation method for the displacement and instantaneous flow rate of the gerotor pump with multi-arc combined profile is proposed. In addition, a calculation model of the flow field characteristics of the gerotor pump with multi-arc combined profile is established, and the validity of the model is verified by experiments. Based on the model of traditional single-arc gerotor pump and the model of the gerotor pump with multi-arc combined profile, the flow rate, internal flow velocity, pressure distribution and gas volume fraction distribution under different working conditions are calculated respectively.
Technical Paper

Development of Lithium-ion Battery Test Bench

2022-03-29
2022-01-0708
A test bench is proposed to be developed to measure relevant mechanics responses of lithium-ion batteries during different charge and discharge processes. It primarily consists of two parts: a mechanical structure part and a measurement and control part. The test system composed of an upper/lower battery fixing spacer and a battery is the core part of the mechanical structure part. This measurement and control part mostly contains an environmental control, an acquisition as well as a charge discharge system.
Technical Paper

Modeling of Gas Charging and Discharging for Airbag Suspension System and Control of Height Adjustment

2023-04-11
2023-01-0660
Taking a closed airbag suspension system as studying objects, the nonlinear dynamic model of the reservoir, compressor, solenoid valve, pipeline and air spring is established. The compressor exhaust volume, solenoid valve flow rate and air spring charging and discharging rate are calculated and compared with experiment to validate the model. Taking pressure difference and height adjustment rate under different working conditions of an airbag suspension as control measures, a control strategy is developed based on the established nonlinear dynamic model. The result indicates that when the vehicle is in curb weight, design weight and GVW (gross vehicle weight), the working time of the compressor can be reduced by 13.6%, 15.1% and 46.5%, respectively, compared with the conventional mode, during a height adjustment cycle. Then a state observer is proposed to estimate the steady-height for reducing the disturbance of measured height from road excitation.
Technical Paper

Research and Parameter Optimization on Ride Comfort and Road Friendliness of Interconnected Air Suspension for Commercial Vehicles

2021-04-06
2021-01-0316
In order to improve the ride comfort and road friendliness of heavy commercial vehicles, a lateral interconnected air suspension system is developed. Based on the theory of thermodynamics and vehicle dynamics, a Ten-degree-of-freedom vehicle dynamics model with lateral interconnected air suspension is established. Interconnected pipeline parameters’ influence on characteristics of air suspension system in whole vehicle are calculated and analyzed. Simulation results show that the stiffness of air suspension decreases gradually with the increase of interconnected pipeline diameter. The designed interconnected air spring experiments verify the simulation results. Simulation on vehicle dynamics models is carried out by building random road models with different roughness levels in MATLAB.
Technical Paper

Research on Airborne Noise of Battery Electric Vehicles Based on Transfer Path Analysis

2021-04-06
2021-01-0323
With the popularity of battery electric vehicles, the engine of the vehicle disappears, so the problem of road noise in cars is becoming more and more prominent. Road noise into the car can be divided into structure-borne noise and airborne noise, this paper only focuses on the airborne noise above 500Hz, completely ignoring the structure-borne noise. A transfer path analysis model with “Intermediate Response Points” is proposed to accurately represent the transfer path of each airborne noise through the setting of “Intermediate Points”. In the Vehicle Semi-Anechoic Room With 4×4 NVH Chassis Dyno, it is possible to create a working condition with only four tires running, so only the tire noise is considered in this paper. The frequency response function is tested in the Semi-Anechoic Chamber and the operating data is tested in the Vehicle Semi-Anechoic Room With 4×4 NVH Chassis Dyno.
Technical Paper

A Novel Kind of Proportional Electromagnetic Dynamic Vibration Absorber

2019-06-05
2019-01-1586
A new proportional electromagnetic dynamic vibration absorber (EDVA) is proposed for control of engine vibration during idling. The device consists of an electromagnetic actuator attached to the primary structure through elastic element, where the driving force pair is implemented between the reaction-mass and the primary structure. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. A methodology is proposed to achieve magnetic force proportional to square of current and consistent with the disturbance frequency. The proportional EDVA is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies.
Technical Paper

Vibration Analysis of an Electric Vehicle Mounting System under Transient Shock Conditions

2021-04-06
2021-01-0664
Electric vehicle motors have the characteristics of fast torque response, large amplitude, and braking feedback torque. Therefore, the excitation of the electric vehicle powertrain has obvious transient impact characteristics, which put forward new requirements for the design of the mounting system. This article carried out the real vehicle test of rapid acceleration and rapid deceleration. A 12-degree-of-freedom nonlinear dynamic model of the electric vehicle mounting system is established. The model is used to calculate the vibration acceleration of the active side and the passive side of the mount, and compared with the test value to verify the correctness of the simulation model. The impact degree, the maximum pitch angle of the powertrain, and the longitudinal acceleration of the powertrain centroid are used as evaluation indicators to analyze the transient response of the electric vehicle mounting system under rapid acceleration and rapid deceleration conditions.
Technical Paper

Modeling and Analysis for Dynamic Performances of a Two-Layer Engine Front End Accessory Drive System with an Overrunning Alternator Decoupler

2021-04-06
2021-01-0656
Two-layer engine front end accessory drive systems (TEFEADS) are adopted generally by commercial vehicles due to the characteristics of the accessory pulleys, which have large torque and moment of inertia. An overrunning alternator decoupler (OAD) is an advanced vibration isolator which can reduce the amplitude of torsional vibration of alternator rotor effectively by an one-way transmission and they are more and more widely used in vehicles. This paper established a model of a generic layout of a TEFEADS with an OAD. The coupling effect between the TEFEADS, the nonlinear characteristics of OAD, the torsional vibration of crankshaft and the creeping on the belt were taken into account. A nine pulleys model was provided as a study example, the dynamic responses, which are respectively under steady and accelerating conditions, of the system were calculated by the established method and compared with the bench experiment.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Journal Article

Numerical Investigation on the Internal Flow Field of Electronic Expansion Valve as the Throttle Element

2022-03-29
2022-01-0318
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model.
Technical Paper

Visual Odometry Integrated Semantic Constraints towards Autonomous Driving

2022-12-22
2022-01-7095
Robust data association is a core problem of visual odometry, where image-to-image correspondences provide constraints for camera pose and map estimation. Current state-of-the-art visual semantic odometry uses local map points semantics, building semantic residuals associated with all classes to realize medium-term tracking of points. Considering the problem of inefficient semantic data associations and redundant semantic observation likelihood model in the visual semantic odometry, we propose a visual odometry, Local Semantic Odometry (LVSO), which is integrated with medium-term semantic constraints based on local nearest neighbor distance model.
X