Refine Your Search

Topic

Search Results

Technical Paper

A Study on Sliding Mode Control for Active Suspension System

2020-04-14
2020-01-1084
Sliding mode control with a disturbance observer (SMC-DO) is proposed for suppressing the sprung mass vibration in a quarter-car with double-wishbone active suspension system (ASS), which contains the geometry structure of the upper and lower control arms. The governing equations of double-wishbone ASS are obtained by the balance-force analysis of the sprung mass in ASS. Considering uncertainties in damping, stiffness, and external disturbance acting on the sprung mass, we design a disturbance observer based on a sliding mode control (SMC) to estimate these uncertainties under the unknown road excitation. By the Lyapunov minimax approach, the uniform boundedness and the uniform ultimate boundedness of ASS with the proposed control are rigorously proved. Through co-simulation of ADAMS software and MATLAB/Simulink software, the sprung mass acceleration of ASS can be obtained with and without the proposed control.
Technical Paper

Research on Fractal Friction Model between Balls and Arc Raceways inside a Ball Joint

2020-04-14
2020-01-1093
During the operation of the ball joint, its service life and transmission efficiency are affected by the internal friction. Taking the ball joint as the research object, based on fractal theory, the friction between the steel ball and the raceway inside the ball joint of an automotive drive shaft system is studied in this paper. During the analysis, the friction between the steel ball and the arc raceway is regarded as the friction between a sphere and an arc raceway surface. In order to describe the friction state more accurately, this paper proposes a correction coefficient to modify the distribution function of contact asperities in the plane, and obtains the distribution function of contact asperities between the sphere and the arc raceway surface. The correction coefficient is related to the load, the size parameters and the material parameters of the steel ball and the raceway.
Technical Paper

Effect of Gas-Pressure Stabilizers on Performance Characteristics of a Single-Cylinder Diesel Engine

1990-02-01
900641
Experimental investigation on a high speed single-cylinder diesel engine has shown that a gas-pressure stabilizer in the exhaust system has obvious effect upon engine performance. Two types of such gas pressure stabilizers were tested, and a reduction of about 0.5% to 2% in fuel consumption rate was achieved, which was mainly dependent on the type of stabilizer employed and was more significant under higher speed conditions.
Technical Paper

Wear of Friction Material during Vehicle Braking

2009-04-20
2009-01-1032
An analysis of the vehicle braking, combining with the linear relation between wear and frictional work already investigated, was used to establish a wear equation. Initial braking velocity, the number of brakings per 1 km and pad thickness loss per 1000 km were determined by using taxis with identical car types and identical pad qualities. Based on the averaged experimental results and some normal braking conditions, the calculated average apparent specific wear rate through the equation was unexpectedly found to decrease firstly and then increase with the increase of average initial braking velocity. The pad friction properties relevant to the equation analysis were tested by using a dynamometer, followed by measuring wear as a function of temperature at three different initial velocities that equal the average initial braking velocities respectively.
Technical Paper

Application of NVH Countermeasures for Interior Booming Noise using Elastomeric Tuned Mass Damper

2009-05-19
2009-01-2124
Tuned mass dampers (TMD) are frequently used in vehicles to resolve vibration and interior booming noise issues arising from powertrain's vibration and road excitation. This paper describes a driveshaft NVH case study in which analysis and test were used to solve the NVH problem. A TMD simulation package that utilizes a database of measured elastomeric material propertied. This facilitates the designing of optimized damper systems for a wide variety of vehicle applications. The simulation software takes into account frequency effects on elastomer properties while designing dampers. And the approach has proven to accurately predict performance in vehicles prior to manufacture. Rules of thumb for TMD design are discussed including locations for placement of dampers in automotive structures, determining the needed mass, and measurements and simulations that can greatly improve the success and reducing time-cost for TMD design.
Technical Paper

Investigation of Vehicle Handling and Ride Comfort Oriented Cooperative Optimization

2010-04-12
2010-01-0722
The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are directly related to the handling and ride comfort performances, how to tune the characteristics of suspensions' elastic elements is always a big issue in developing the chassis of a vehicle. In this paper, a multi-body dynamics model of a passenger car within MSC.ADAMS® is integrated with iSight FD®, an optimization tool, to carry out a multi-objective optimization for improving the behavior of vehicle handling and ride comfort. The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are considered as design variables. For handling, the objectives are defined by the measurements from multi-body dynamics simulation of typical double lane change according to ISO3888 standard. For ride comfort, the frequency-weighted RMS (Root Mean Square) value of vertical acceleration of the front seat rail according to ISO2631 standard is set as the objective.
Technical Paper

Effect of Magnetic Nanorefrigerant on Electric Vehicle

2017-10-08
2017-01-2222
The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately. In the heat pump air conditioning system of a certain type of electric vehicle, the special working condition parameters are selected to carry out calculation analysis with numerical analysis software.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Numerical Investigation of Solenoid Valve Flow Field in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0806
The decoupling brake-by-wire system controls the key components of the flow path and liquid flow of the whole brake system through the solenoid valve of the bottom control unit. The reference cross-sectional area value at the valve inlet is obtained by calculation, and the valve body structure model is established. The flow channel structure is extracted, and the porous media model is used to replace the fluid area of the filter screen at the entrance of the solenoid valve. The Fluent software is used to analyze the influence on the flow characteristics of the solenoid valve with or without a filter. The accuracy of the model is verified by the experimental results, which also show that the porous medium can effectively and accurately reflect the characteristics of the solenoid valve end filter.
Technical Paper

Numerical Investigation of the Static Characteristics of Solenoid Valve in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0804
The static characteristics of solenoid valve play an important role in the performance of brake system and can indirectly reflect the response speed of the brake system. The static characteristics of the solenoid valve reflect the electromagnetic characteristics of the solenoid valve itself, revealing the maximum potential of the solenoid valve in the system work, which is one of the important characteristics to characterize the working ability of the solenoid valve. In this paper, a numerical calculation method is used to build a finite element model of the solenoid valve electromagnetic field on the Ansoft Maxwell simulation platform. The model takes into account the nonlinear magnetization characteristics of soft magnetic materials and the air gap.
Technical Paper

Research on Mid-Low Frequency Noise Reduction Material and Its Structure Design

2021-04-06
2021-01-0815
Aiming at the problem of middle and low frequency noise absorption, a combined sound-absorbing structure is designed based on porous material and a coiled-up cavity resonance structure. Combined with the sound absorption principle of porous materials and coiled-up cavities, a theoretical analytical model was established. By the finite element method, the sound absorption coefficient curve of the combined structure in a frequency range of 500-2000Hz is calculated, and the correctness of the analytical calculation and the finite element simulation calculation was verified in the impedance tube experiment. The results show that the combined structure has good sound absorption performance in the 500Hz-2000Hz frequency band, and the sound absorption peak appears near the 1108Hz frequency, reaching nearly perfect sound absorption. Compared with a single porous material, the sound absorption performance of the combined structure is better.
Technical Paper

Study on the Influence of Air Suspension Levelling Valve Charging and Discharging Characteristics on Heavy Truck Roll Stability

2021-04-06
2021-01-0980
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Fatigue Life Prediction Method for Natural Rubber Material Based on Extreme Learning Machine

2022-03-29
2022-01-0258
Uniaxial fatigue tests of rubber dumbbell specimens under different mean and amplitude of strain are carried out. An Extreme Learning Machine (ELM) model optimized by Dragonfly Algorithm (DA) is proposed to predict the fatigue life of rubber based on measured rubber fatigue life data. Mean and amplitude of strain and measured rubber fatigue life are taken as input variables and output variables respectively in DA-ELM model. For comparison, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize ELM parameters, and GA-ELM and PSO-ELM models are established. The comparison results show that DA-ELM model performs better in predicting the fatigue life of rubber with least dispersion. The coefficients of determination for the training set and test set are 99.47% and 99.12%, respectively. In addition, a life prediction model equivalent strain amplitude as damage parameter is introduced to further highlight the superiority of DA-ELM model.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Journal Article

Modeling Method of Dynamic Characteristics of Hydraulic Damping Rubber Isolator

2022-03-29
2022-01-0282
The dynamic characteristics of hydraulic damping rubber isolators (such as hydraulic bushing and hydraulic mount) are related to excitation amplitude and frequency. Based on the lumped parameter model of hydraulic damping rubber isolator, a unified linear model of complex stiffness is derived and its deficiency is pointed out. Based on the derived linear model, this paper considers the nonlinear damping of inertia channel and the nonlinear stiffness of the upper chamber of the hydraulic damping rubber isolator, so as to establish a new nonlinear model, which can reflect the amplitude and frequency dependence of the dynamic characteristics of the hydraulic damping rubber isolator. Finally, the nonlinear model is used to analyze the dynamic response of hydraulic damping rubber isolator under harmonic excitation and random excitation respectively, and the results are compared with the test results.
Technical Paper

Research on Sound Insulation Characteristics and Application of Acoustic Metamaterials

2022-03-29
2022-01-0343
In the field of low-frequency noise control, the acoustic metamaterials have received extensive attention from researchers. However, the existing work mainly focuses on small structures with fixed boundaries, which is quite different from engineering applications. Based on the membrane-type acoustic metamaterials, this paper uses a rigid thin plate to replace the tensioned membrane, design and manufacture of two new types of local resonance structure and studies their sound insulation properties. First, the metamaterial samples with a small size of 100mm in diameter and a large-size square with a side length of 506mm were produced, and the sound TL of the two was tested through the impedance tube and the reverberation chamber-anechoic chamber, respectively. The results show that the new structure can form an obvious sound insulation frequency band at low frequencies. Based on the finite element method, a metamaterial acoustic transmission loss calculation model is established.
X