Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

Parametric Design of Helical Intake Ports

1995-02-01
950818
The design of helical Intake ports for swirl generation is a process that has been developed over a number of years through primarily empirical methods. A number of design rules have been established that enable designers to develop ports that approach the state-of-the-art for maximum swirl generation with minimum pressure loss. More recently, computer-aided design (CAD) tools have been introduced that permit geometry and features to be accurately defined by mathematical surface descriptions, and to be parameterized such that derived geometry is updated automatically along with parent features. The author has developed a parametric design approach for helical ports that incorporates the lessons learned from experience into a systematic design procedure. This procedure takes advantage of the current CAD capabilities to expedite the design process and improve the result.
X