Refine Your Search

Topic

Search Results

Journal Article

A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft

2011-10-18
2011-01-2652
The general benefits of automation are well documented. Order of magnitude improvements are achievable in processing speeds, production rates, and efficiency. Other benefits include improved process consistency (inversely, reduced process variation), reduced waste and energy consumption, and risk reduction to operators. These benefits are especially true for the automation of the aerospace paint removal (or "depaint") processes. Southwest Research Institute® (SwRI®) developed and implemented two systems in the early 1990s for depainting full-body fighter aircraft at Robins Air Force Base (AFB) at Warner Robins, Georgia, and Hill AFB at Ogden, Utah. These systems have been in production use, almost continuously for approximately 20 years, for the depainting of the F-15 Eagle and the F-16 Falcon fighter aircraft, respectively.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

The Port Fuel Injector Deposit Test - A Statistical Review

1998-10-19
982713
The Port Fuel Injector (PFI) Deposit Test is a performance-based test procedure developed by the Coordinating Research Council and adopted by state and federal regulatory agencies for fuel qualification in the United States. To date, Southwest Research Institute (SwRI) has performed over 375 PFI tests between 1991 and 1998 for various clients. This paper details the analyses of these tests. Of the 375 tests, 199 were performed as keep-clean tests and 176 were performed as clean-up tests. The following areas of interest are discussed in this paper: Keep-clean versus clean-up test procedures Linearity of deposit formation Injector position effects as related to fouling Dirtyup / cleanup phenomena Seasonal effects This paper draws the conclusion that it is easier to keep new injectors from forming deposits than it is to clean up previously formed deposits. It was found that injector deposit formation is generally non-linear.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

CO2 Pump for the Space Station Advanced Atmosphere Revitalization Subsystem

2001-07-09
2001-01-2418
The current operation of the International Space Station (ISS) calls for the oxygen used by the occupants to be vented overboard in the form of CO2, after the CO2 is scrubbed from the cabin air. Likewise, H2 produced via electrolysis in the oxygen generator is also vented. NASA is investigating the use of the Sabatier process to combine these two product streams to form water and methane. The water is then used in the oxygen generator, thereby conserving this valuable resource. One of the technical challenges to developing the Sabatier reactor is transferring CO2 from the Carbon Dioxide Removal Assembly (CDRA) to the Sabatier reactor at the required rate, even though the CDRA and the Sabatier reactor operate on different schedules. One possible way to transfer and store CO2 is to use a mechanical compressor and a storage tank.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

1993-03-01
930383
Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

Proposed Efficiency Rating for an Optimized Automatic Transmission

1996-02-01
960425
Increased concern for improving fuel mileage in today's vehicles has focused attention on powertrain component efficiencies. Currently, no efficiency standards exist for automatic transmissions but, uniform testing procedures do exist. Consequently, vehicle and transmission manufacturers have no basis for comparing transmission-to-transmission performance. In addition, manufacturers have no design targets from which to critique their product. This paper addresses this issue by developing an overall transmission efficiency rating. This rating is based upon average transmission operational torques and speeds, the percent time of operation in each gear for a representative duty cycle, and representative efficiencies at these conditions based on test data obtained from a cross section of current production transmissions.
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
Technical Paper

System Component Coupling for Structure Borne Noise Isolation Studies

1997-05-01
971460
Control of structure borne noise transmission into an aircraft cabin generated from component excitation, such as rotor/engine vibration imbalance or firing excitations or from auxiliary equipment induced vibrations, can be studied empirically via impedance characterization of the system components and application of appropriate component coupling procedures. The present study was aimed at demonstrating the usefulness of such impedance modeling techniques as applied to a Bell 206B rotorcraft and a Cessna TR182 general aviation aircraft. Simulated rotor/engine excitations were applied to the assembled aircraft systems to provide baseline structure borne noise transmission data. Thereafter, impedance tests of the system components were carried out to provide a data base from which system component coupling studies were carried out.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

2004-07-19
2004-01-2496
An analysis model has been developed for analyzing/optimizing the integration of a carbon dioxide removal assembly (CDRA), CO2 compressor, accumulator, and Sabatier CO2 reduction assembly. The integrated model can be used in optimizing compressor sizes, compressor operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and utilization of H2 from oxygen generation assembly. Tests to validate CO2 desorption, recovery, and compression had been conducted in 2002-2003 using CDRA/Simulation compressor set-up at NASA Marshall Space Flight Center (MSFC). An analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in the CDRA model. Analysis / optimization of the compressor size and the compressor operation logic for an integrated closed air revitalization system is currently being conducted
Technical Paper

The Turbo Trac Traction Drive CVT

2004-08-23
2004-40-0038
A unique and attractive variator mechanism has been developed by Turbo Trac, Inc. and Southwest Research Institute (SwRI) for initial use in a heavy duty diesel truck application. High efficiency levels have been predicted with analytical models and confirmed with actual test data. Further, this variator incorporates a very stable and simple control system and has extremely high torque capacity. The prototype of the variator mechanism has also been configured with a modified Allison 650 series transmission for use as a series application in a Peterbilt truck, the final configuration will be a split power design. The setup includes a preliminary control system that allows for highway driving. It is emphasized, however, that Allison did not contribute to this design or any of the content of this paper.
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Interior Noise Source/Path Identification Technology

2000-05-09
2000-01-1709
Excessive interior noise and vibration in propeller driven general aviation aircraft can result in poor pilot communications with ground control personnel and passengers, and, during extended flights, can lead to pilot and passenger fatigue. Noise source/path identification technology applicable to single engine propeller driven aircraft were employed to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken was first to conduct a Principal Value Analysis (PVA) of an in-flight noise and vibration database acquired on a single engine aircraft to obtain a correlated data set as viewed by a fixed set of cabin microphones.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

Numerical Simulations of SAE #2 Machine Tests

1999-10-25
1999-01-3617
For many years the SAE No. 2 friction machine has been used to measure the coefficient of friction obtained through the interaction of fluid, steel and clutch material. In addition, by forcing energy through the wetted clutch-steel interface and measuring the decay of the coefficient of friction over time, the durability of the materials and fluids can be determined. This paper discusses the use of a numerical computer model to duplicate SAE No. 2 data. The inputs for this model include test stand geometry and physical properties as well as output from a low velocity friction apparatus (LVFA). The LVFA uses a small disc of friction material, a small disc of steel material, and a small sample of fluid to generate a coefficient versus speed curve (m vs v). It was found that torque traces and speed traces generated by this model correlate well with actual SAE No. 2 data. THERE ARE SEVERAL REASONS for creating this model.
X