Refine Your Search

Topic

Author

Search Results

Technical Paper

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

2020-04-14
2020-01-1282
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Journal Article

Ethanol Flex-fuel Engine Improvements with Exhaust Gas Recirculation and Hydrogen Enrichment

2009-04-20
2009-01-0140
An investigation was performed to identify the benefits of cooled exhaust gas recirculation (EGR) when applied to a potential ethanol flexible fuelled vehicle (eFFV) engine. The fuels investigated in this study represented the range a flex-fuel engine may be exposed to in the United States; from 85% ethanol/gasoline blend (E85) to regular gasoline. The test engine was a 2.0-L in-line 4 cylinder that was turbocharged and port fuel injected (PFI). Ethanol blended fuels, including E85, have a higher octane rating and produce lower exhaust temperatures compared to gasoline. EGR has also been shown to decrease engine knock tendency and decrease exhaust temperatures. A natural progression was to take advantage of the superior combustion characteristics of E85 (i.e. increase compression ratio), and then employ EGR to maintain performance with gasoline. When EGR alone could not provide the necessary knock margin, hydrogen (H2) was added to simulate an onboard fuel reformer.
Technical Paper

Electronic Data Acquisition and Analysis for the NHTSA ABS Fleet Evaluation

1990-10-01
902264
Antilock brake systems for air braked vehicles have been growing in popularity in Great Britain and Europe and appear to be candidates for extensive use in the United States as well. Previous mandated use in the United States during the 1970's was not successful, in part because of reliability problems, and the National Highway Traffic Safety Administration (NHTSA) has decided that a thorough evaluation of air brake antilock systems is necessary prior to any decision about the appropriateness of future mandatory use in the United States. This paper describes the electronic data collection equipment and processing techniques which are being used in the NHTSA 200 truck evaluation project. Detailed maintenance histories for each truck are being recorded manually as a separate segment of the project. An average of 6 to 7 megabytes of data per week is being collected in the various cities in which fleets are operating test vehicles.
Technical Paper

A Regenerative Active Suspension System

1991-02-01
910659
Active automotive suspension systems have been under development for a number of years with recent introductions of various versions. A suspension system can be considered “active” when an outside power source is used to alter its characteristics, and these systems can be placed into one of three (3) different categories: semi-active damping, fully active, and low frequency active. A regenerative pump concept can minimize the power requirement for the low frequency active system. It utilizes four (4) independent variable displacement pump/motor combinations on a common shaft to actuate each individual suspension unit. This paper overviews the system configuration, describes the power and energy-saving features of the system, and discusses possible pump configurations and control strategies.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

Fuel Economy Benefits of Electric and Hydraulic Off Engine Accessories

2007-04-16
2007-01-0268
This paper will describe the fuel economy benefits that can be obtained when traditionally engine-driven accessories such as water pumps, oil pumps, power steering pumps, radiator cooling fans and air conditioning compressors are decoupled from the engine and are remotely driven and controlled. Simulation results for different vehicle configurations such as heavy duty trucks operated over urban and highway driving cycles and light duty vehicles such as mini vans will be presented. These results will quantify the heavy dependence of fuel economy benefits associated with different types of driving cycles.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Catalytic Converter Design from Mat Material Coupon Fragility Data

2004-03-08
2004-01-1760
Automotive catalytic converters must provide a very high level of mechanical and thermal durability to maintain performance during their 100,000 to 150,000 mile life expectancy. The work reported herein characterizes the converter as a base (can) excited spring (mat material) supported mass (substrate). A mat material coupon test apparatus was developed for the purpose of providing parameter data for the converter model in the form of stiffness and material loss factor data as a function of shear deflection across the mat. An intumescent mat material was chosen and its dynamic properties evaluated for a range of converter operating parameters. The mat material response properties were placed into a mat material database as a function of gap bulk density, substrate temperature, and temperature gradient across the mat.
Technical Paper

Optimum Control of a Hydrostatic Powertrain in the Presence of Accessory Loads

2002-03-19
2002-01-1417
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
Technical Paper

The Effect of Environmental Aging on Intumescent Mat Material Durability at Low Temperatures

2002-03-04
2002-01-1099
Mat material durability data in the form of fragility curves were generated in a critical temperature region for three intumescent mat materials considered for low temperature converter applications. The mat materials were tested in a tourniquet wrap converter configuration employing a cylindrical ceramic substrate. Prior to developing durability data for these mat materials, the test items were subjected to various environmental thermal and/or vibration aging conditions. Mat material fragility data were generated in terms of the dynamic force required to impose prescribed differential motion between the can and substrate, thereby, subjecting the mat material to a dynamic shearing like that expected during resonant excitation. As expected, it was found that the mat material capacity to resist shearing deformation decreased when the test samples were subjected to 36 hours of low temperature thermal cyclic aging.
Technical Paper

On-Line Oil Consumption Measurement and Characterization of an Automotive Gasoline Engine by SO2 Method

1992-02-01
920652
An on-line oil consumption measurement system using the SO2 tracer method has characterized automotive gasoline engine oil consumption under various engine operating conditions, including a 200-hour durability test. An oil consumption map of total engine, individual cylinder, and valve train was produced for various speed and load ranges under both steady-state and step-transient operating conditions. The effect of spark timing as an additional engine parameter on the oil consumption was also investigated. Oil consumption maps have enlightened the conventional understanding of oil consumption characteristics and broadened the areas of concern for control technologies. This paper reports the benefit of the on-line oil consumption measurement system, the result of oil consumption history over the durability test, discrete measurement of oil consumption contribution within the engine, and various oil consumption characteristics affected by engine operating conditions.
Technical Paper

Development of an I/M Short Emissions Test for Buses

1992-02-01
920727
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

Navigation Control in an Urban Autonomous Ground Vehicle

2011-04-12
2011-01-1037
Southwest Research Institute developed an Autonomous Ground Vehicle (AGV) capable of navigating in urban environments. The paper first gives an overview of hardware and software onboard the vehicle. The systems onboard are classified into perception, intelligence, and command and control modules to mimic a human driver. Perception deals with sensing from the world and translating it into situation awareness. This awareness is then fed into intelligence modules. Intelligence modules take inputs from the user to understand the need to navigate from its current location to another destination and, then, generate a path between them on urban, drivable surfaces using its internal urban database. Situational awareness helps intelligence to update the path in real time by avoiding any static/moving obstacles while following traffic rules.
Technical Paper

Low Cost Bharat Stage 3 and 4 Heavy Duty Diesel Technology

2011-01-19
2011-26-0078
This paper reviews the technologies available for Bharat Stage 3 and 4 Heavy Duty on-highway emissions standards. Benchmarking data from several existing engines is used to explore the trade-offs between engine/vehicle cost and fuel consumption. Other implications of the available technologies, such as durability / reliability requirements, are also addressed. The paper provides recommendations for low cost approaches to meeting Bharat Stage 3 and 4 standards with good fuel consumption and reliability/ durability characteristics. A brief look ahead to future Bharat Stage 5 requirements is also provided.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Simultaneous Application of Optical Spark Plug Probe and Head Gasket Ionization Probe to a Production Engine

1993-03-01
930464
The optical spark plug probe and ionization head gasket probe developed at Sandia Laboratories were applied to one cylinder of a production multicylinder automotive gasoline engine. The purpose of this application is to eventually study combustion phenomena leading to high emissions under cold start and cold idle conditions. As a first step in studying cold start combustion and emissions issues, diagnostic instrumentation was simultaneously applied to a production engine under steady state idle, road load and an intermediate load-speed condition. The preliminary application of such instrumentation is the subject of the present paper. The spark plug probe was redesigned for ease of use in production engines and to provide a more robust design. The two probes were geometrically oriented to obtain radial line-up between the optical windows and ionization probes. Data were taken simultaneously with both probes at the three load-speed conditions mentioned above.
X