Refine Your Search

Topic

Author

Search Results

Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Journal Article

Smooth In-Cylinder Lean-Rich Combustion Switching Control for Diesel Engine Exhaust-Treatment System Regenerations

2008-04-14
2008-01-0979
This paper describes an in-cylinder lean-rich combustion (no-post-injection for rich) switching control approach for modern diesel engines equipped with exhaust-treatment systems. No-post-injection rich combustion is desirable for regeneration of engine exhaust-treatment systems thanks to its less fuel penalty compared with regeneration approaches using post-injections and / or in-exhaust injections. However, for vehicle applications, it is desirable to have driver-transparent exhaust-treatment system regenerations, which challenge the in-cylinder rich-lean combustion transitions. In this paper, a nonlinear in-cylinder condition control system combined with in-cylinder condition guided fueling control functions were developed to achieve smooth in-cylinder lean-rich switching control at both steady-state and transient operation. The performance of the control system is evaluated on a modern light-duty diesel engine (G9T600).
Journal Article

Effect of EGR on Particle Emissions from a GDI Engine

2011-04-12
2011-01-0636
Gasoline direct injected (GDI) engines are becoming a concern with respect to particulate matter (PM) emissions. The upcoming 2014 Euro 6 regulations may require a drastic reduction in solid particle number emissions from GDI engines and the proposed California Air Resources Board (CARB) LEV III regulations for 2014 and 2017 will also require some PM reduction measures. As a result, it is necessary to characterize PM emissions from GDI engines and investigate strategies that suppress particle formation during combustion. The main focus of this work was on using exhaust gas recirculation (EGR) as a means to reduce engine-out particle emissions from a GDI engine with an overall stoichiometric fuel to air mixture. A small displacement, turbocharged GDI engine was operated at a variety of steady-state conditions with differing levels of EGR to characterize total (solid plus volatile) and solid particle emissions with respect to size, number, and soot or black carbon mass.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions

2013-04-08
2013-01-1301
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III emissions standard which will require significant reductions of hydrocarbon (HC) and oxides of nitrogen (NOx) from current levels. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines so the time required to achieve effective emissions control with current aftertreatment devices is considerably longer. The objective of this study was to determine the potential of a novel diesel cold-start emissions control strategy for achieving LEV III emissions. The strategy combines several technologies to reduce HC and NOx emissions before the start of the second hill of the FTP75.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Technical Paper

Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles

2007-07-23
2007-01-1937
A new diesel engine system adopting alternative combustion with rich and near rich combustion, and an airflow-dominant control system for precise combustion control was used with a 4-way catalyst system with LNT (lean NOx trap) to achieve Tier II Bin 5 on a 2.2L TDI diesel engine. The study included catalyst temperature control, NOx regeneration, desulfation, and PM oxidation with and without post injection. Using a mass-produced lean burn gasoline LNT with 60,000 mile equivalent aging, compliance to Tier II Bin 5 emissions was confirmed for the US06 and FTP75 test cycles with low NVH, minor fuel penalty and smooth transient operation.
Technical Paper

AN AIRFLOW-DOMINANT CONTROL SYSTEM FOR FUTURE DIESEL ENGINES

2007-07-23
2007-01-2070
An airflow-dominant control system was developed to provide precise engine and exhaust treatment control with low air fuel ratio alternative combustion. The main elements of the control logic include a real-time state observer for in-cylinder oxygen mass estimation, a simplified packaging scheme for all air-handling and fueling parameters, a finite state machine for control mode switching, combustion control models to maintain robust alternative combustion during transients, and smooth rich/lean switching during lean NOx trap (LNT) regeneration without post injection. The control logic was evaluated on a passenger car equipped with a 4-way catalyst system with LNT and was instrumental in achieving US Tier II Bin 5 emission targets with good drivability and low NVH.
Technical Paper

Development of an Ethanol-Fueled Ultra-Low Emissions Vehicle

1998-05-04
981358
A 1993 Ford Taurus Flexible Fuel Vehicle (FFV) designed to operate on gasoline or methanol has been modified to run on Ed85 (85 vol.% denatured ethanol, 15 vol.% gasoline) and has demonstrated the ability to meet California's Ultra-Low Emissions Vehicle (ULEV) standards. The vehicle maintains the excellent driveability with potentially increased performance and similar efficiency to the baseline vehicle. Using standard twin OEM catalysts, FTP-75 emissions were 0.085 g/mi NOx, 0.88 g/mi CO, and 0.039 g/mi reactivity-adjusted NMOG. Using close-coupled catalysts upstream of the OEM catalysts, FTP-75 emissions were 0.031 g/mi NOx, 0.297 g/mi CO, and 0.015 g/mi reactivity-adjusted NMOG. The catalysts were aged to about 4,000 miles of equivalent use. These emissions compare with ULEV standards of 0.2 g/mi NOx, 1.7 g/mi CO, and 0.04 g/mi NMOG at 50,000 miles of use.
Technical Paper

Hybrid Robust Control for Engines Running Low Temperature Combustion and Conventional Diesel Combustion Modes

2007-04-16
2007-01-0770
This paper describes a hybrid robust nonlinear control approach for modern diesel engines running low temperature combustion and conventional diesel combustion modes. Using alternative combustion modes has become a promising approach to reduce engine emissions. However, due to very different in-cylinder conditions and fueling parameters for different combustion modes, control of engines operating multiple combustion modes is very challenging. It becomes difficult for conventional calibration / mapping based approaches to produce satisfactory results in terms of engine torque responses and emissions. Advanced control techniques are then demanded to accomplish the tasks. An innovative hybrid control system is designed to track different key engine operating variables at different combustion modes as well as avoid singularity which is inherent for turbocharged diesel engines running multiple combustion modes.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

2007-04-16
2007-01-1058
This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

The Potential for Achieving Low Hydrocarbon and NOx Exhaust Emissions from Large Light-Duty Gasoline Vehicles

2007-04-16
2007-01-1261
Two large, heavy light-duty gasoline vehicles (2004 model year Ford F-150 with a 5.4 liter V8 and GMC Yukon Denali with a 6.0 liter V8) were baselined for emission performance over the FTP driving cycle in their stock configurations. Advanced emission systems were designed for both vehicles employing advanced three-way catalysts, high cell density ceramic substrates, and advanced exhaust system components. These advanced emission systems were integrated on the test vehicles and characterized for low mileage emission performance on the FTP cycle using the vehicle's stock engine calibration and, in the case of the Denali, after modifying the vehicle's stock engine calibration for improved cold-start and hot-start emission performance.
Technical Paper

Diesel Catalyst Aging using a FOCAS® HGTR, a Diesel Burner System, to Simulate Engine-Based Aging

2010-04-12
2010-01-1218
The classical approach to prepare engine exhaust emissions control systems for evaluation and certification is to condition the fresh parts by aging the systems on an engine/dynamometer aging stand. For diesel systems this can be a very lengthy process since the estimated service life of the emissions control systems can be several hundred thousand miles. Thus full useful life aging can take thousands of engine bench aging hours, even at elevated temperatures, making aging a considerable cost and time investment. Compared to gasoline engines, diesel engines operate with very low exhaust gas temperatures. One of the major sources of catalyst deactivation is exposure to high temperature [ 1 ].
Technical Paper

Control System Development for Retrofit Automated Manual Transmissions

2009-12-13
2009-28-0001
For transmission suppliers tooled primarily for producing manual transmissions, retrofitting a manual transmission with actuators and a controller is business viable. It offers a low cost convenience for the consumer without losing fuel economy when compared to torque converter type automatics. For heavy duty truck fleets even the estimated 3% gain in fuel economy that the Automated Manual Transmission (AMT) offers over the manual transmission can result in lower operational costs. This paper provides a case study using a light duty transmission retrofitted with electric actuation for gears and the clutch. A high level description of the control algorithms and hardware is included. Clutch control is the most significant component of the AMT controller and it is addressed in detail during operations such as vehicle launch from rest, launch from coast and launch on grades.
Technical Paper

Method for Analyzing Lubricating Oil Contamination of Aircraft Systems

2002-11-05
2002-01-2942
Cabin air quality is of continuing importance [1]. Contamination of air with particulates or vapors has the potential of affecting the health of passengers and flight crew. Therefore, measures are required to maintain acceptable levels of cabin air quality. One potential source of cabin air contamination is lubricating oils used in the engines. Type II oils are required for the main engines, but Type I or Type II oils can be used for the APU, with Type I recommended by some engine manufacturers for its cold-start properties. Southwest Research Institutes (SwRI®) Department of Emissions Research used an internally developed analytical method called Direct Filter Injection/Gas Chromatograph (DFI/GC™) to analyze for volatile fractions of lubricating oil contaminants on Environmental Control System (ECS) components. Samples of two standard Type II aviation turbine lubricating oils were analyzed with the DFI/GC™ method and their spectra examined.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Development of a Piston Temperature Telemetry System

1992-02-01
920232
The measurement of piston temperature in a reciprocating engine has historically been a very time-consuming and expensive process. Several conditions exist in an engine that measurement equipment must be protected against. Acceleration forces near 2000 G's occur at TDC in automotive engines at rated speed. Operating temperatures inside the crankcase can range to near 150°C. To allow complete mapping of piston temperature, several measuring locations are required in the piston and data must be obtained at various engine operating conditions. Southwest Research Institute (SwRI) has developed a telemetry-based system that withstands the harsh environments mentioned above. The device is attached to the underside of a piston and temperature data is transmitted to a receiving antenna in the engine crankcase. The key element of this device is a tiny power generator which utilizes the reciprocating motion of the piston to generate electricity thus allowing the transmitter to be self-powered.
Technical Paper

Detailed Characterization of Criteria Pollutant Emissions from D-EGR® Light Duty Vehicle

2016-04-05
2016-01-1006
In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
Technical Paper

Countering the Effects of Media Interferences and Background Contamination in Collection of Low Concentration Aldehydes and Ketones in Engine Exhaust with Dinitrophenylhydrazine (DNPH) Derivatization

2011-08-30
2011-01-2060
This paper discusses a method developed to counter the variability of media interferences for the measurement of aldehydes and ketones in automotive exhaust. Dinitrophenylhydrazine (DNPH) Derivatization Methodology for the collection of aldehyde and ketone compounds in vehicle exhaust has been in use for over thirty years. These carbonyl compounds are captured by passing diluted exhaust gas through a sample medium containing DNPH. The sampling medium can take the form of DNPH dispersed on a solid sorbent or as a DNPH solution in a solvent such as acetonitrile. Carbonyl compounds react readily to form DNPH derivatives which are stable and which absorb ultra-violet (UV) light, facilitating quantitative measurement. However, when the procedure was developed, emissions rates from vehicles were much higher than the current (2010) emissions levels.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
X