Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

Emissions From Snowmobile Engines Using Bio-based Fuels and Lubricants

1997-10-27
978483
Snowmobile engine emissions are of concern in environmentally sensitive areas, such as Yellowstone National Park (YNP). A program was undertaken to determine potential emission benefits of use of bio-based fuels and lubricants in snowmobile engines. Candidate fuels and lubricants were evaluated using a fan-cooled 488-cc Polaris engine, and a liquid-cooled 440-cc Arctco engine. Fuels tested include a reference gasoline, gasohol (10% ethanol), and an aliphatic gasoline. Lubricants evaluated include a bio-based lubricant, a fully synthetic lubricant, a high polyisobutylene (PIB) lubricant, as well as a conventional, mineral-based lubricant. Emissions and fuel consumption were measured using a five-mode test cycle that was developed from analysis of snowmobile field operating data.
X