Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modeling NOx Emissions from Lean-Burn Natural Gas Engines

1998-05-04
981389
A zero-dimensional cycle simulation model coupled with a chemical equilibrium model and a two-zone combustion model has been extended to predict nitric oxide formation and emissions from spark-ignited, lean-burn natural gas engines. It is demonstrated that using the extended Zeldovich mechanism alone, the NOx emissions from an 8.1-liter, 6-cylinder, natural gas engine were significantly under predicted. However, by combining the predicted NOx formation from both the extended Zeldovich thermal NO and the Fenimore prompt NO mechanisms, the NOx emissions were predicted with fair accuracy over a range of engine powers and lean-burn equivalence ratios. The effect of injection timing on NOx emissions was under predicted. Humidity effects on NOx formation were slightly under predicted in another engine, a 6.8-liter, 6-cylinder, natural gas engine. Engine power was well predicted in both engines, which is a prerequisite to accurate NOx predictions.
Technical Paper

Improved Atomization of Methanol for Low-Temperature Starting in Spark-Ignition Engines

1992-02-01
920592
Heating neat (100 percent) methanol fuel (M100) is shown to improve dramatically the atomization of the fuel from a production, automotive, port fuel injector of pintle design. This improvement is particularly noticeable and important when compared with atomization at low fuel temperatures, corresponding to those conditions where cold-start is a significant problem with neat methanol-fueled (M100) vehicles. The improved atomization is demonstrated with photographs and laser-diffraction measurements of the drop-size distributions. Fuel temperatures were varied from -34°C (-29°F to 117°C (243°F), while the boiling point of methanol is 64.7°C (148.5°F). Air temperatures were ambient at about 24°C (75°F). For temperatures above the boiling point, some flash boiling and vaporization were presumably occurring, and these may have contributed to the atomization, but the trends for drop size did not shown any discontinuity near the boiling point.
Technical Paper

Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine

1997-02-24
970264
An emissions reduction strategy was developed and demonstrated to significantly reduce cold-start hydrocarbon (HC) and CO emissions from a spark ignition (SI), gasoline-fueled engine. This strategy involved cold-starting the engine with an ultra-fuel rich calibration, while metering near-stoichiometric fractions of air directly into the exhaust ports. Using this approach, exhaust constituents spontaneously ignited at the exhaust ports and burned into the exhaust manifold and exhaust pipe leading to the catalytic converter. The resulting exotherm accelerated catalyst heating and significantly decreased light-off time following a cold-start on the FTP-75 with a Ford Escort equipped with a 1.9L engine. Mass emissions measurements acquired during the first 70 seconds of the FTP-75 revealed total-HC and CO reductions of 68 and 50 percent, respectively, when compared to baseline measurements.
X