Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

2016-11-08
2016-32-0045
Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ~20. It has been speculated that the higher losses (short-circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 octane number (ON) fuel.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Journal Article

Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines

2017-03-14
2017-01-9276
The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined. Energy balances consisting of five pathways were experimentally determined on two engines that are representative of Group-2 RPA propulsion systems and compared to those in the literature for larger and smaller engines.
Journal Article

Heat Transfer Performance of a Dual Latent Heat Sink for Pulsed Heat Loads

2008-11-11
2008-01-2928
This paper presents the concept of a dual latent heat sink for thermal management of pulse heat generating electronic systems. The focus of this work is to verify the effectiveness of the concept during charging through experimentation. Accordingly, custom components were built and a prototype version of the heat sink was fabricated. Experiments were performed to investigate the implementation feasibility and heat transfer performance. It is shown that this heat sink is practicable and helps in arresting the system temperature rise during charging (period of pulse heat load).
Technical Paper

Effect of Thermal Conductivity and Latent Heat of Vaporization of Liquid on Heat Transfer in Spray Cooling

2006-11-07
2006-01-3068
The two-phase flow modeling is done using the level set method to identify the interface of vapor and liquid. The modifications to the incompressible Navier-Stokes equations to consider surface tension, viscosity, gravity and phase change are discussed in detail. The governing equations are solved using finite difference method. In the present work, investigations on the effect of thermal conductivity and latent heat of vaporization of liquid on heat transfer in a 44 µm thick liquid film containing vapor bubble with droplet impact is investigated. The importance of thermal conductivity and latent heat of vaporization of liquid on heat transfer is identified. The variation of heat flux with thermal conductivity and latent heat is plotted. The computed liquid and vapor interface, velocity vector and temperature distributions at different time instants are also visualized for better understanding of the heat removal.
Technical Paper

Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers

2006-11-07
2006-01-3083
Advances in the past decade of the energy and power densities of lithium-ion based batteries for hybrid electric vehicles and various consumer applications have been substantial. Rechargeable high rate lithium-ion batteries are now exceeding 6 kW/kg for short discharge times (<15 seconds). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at >1.0 kW/kg). Some preliminary test data on a rechargeable lithium-ion polymer battery is presented. The use of high rate rechargeable lithium-ion batteries as a function of onboard power, electric laser power level, laser duty cycle, and total mission time is presented. A number of thermal management system configurations were examined to determine system level weight impacts. Lightweight configurations would need a regenerative thermal energy storage subsystem.
Technical Paper

Transient Turbine Engine Modeling and Real-Time System Integration Prototyping

2006-11-07
2006-01-3040
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. This paper investigates the possibility of using a hardware-in-the-loop (HIL) analysis with real time integration. A representative electrical power system is removed from a turbine engine model simulation and replaced with the appropriate hardware attached to a 350 horsepower drive stand. In order to update the model to proper operating conditions, variables are passed between the hardware and the computer model. Using this method, a significant reduction in runtime is seen, and the turbine engine model is usable in a real time environment. Scaling is also investigated for simulations to be performed that exceed the operating parameters of the drive stand.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
Technical Paper

Development of LHP with Low Control Power

2007-07-09
2007-01-3237
Using Loop Heat Pipes (LHPs) for controlling the temperature of the source of heat has been considered for many applications. However, traditional LHPs can require significant amounts of power for source temperature control. A number of techniques have been identified and implemented to reduce control power requirements. One of the very first design approaches was to thermally couple the liquid line bringing subcooled liquid from the condenser to the vapor line entering the condenser with a number of “coupling blocks”. In another application, a variable conductance heat pipe (VCHP) was used to couple the liquid line to the LHP evaporator. A third generation approach has been developed that offers even further reductions in control power. The paper discusses earlier generations of control power reduction approaches with their advantages and disadvantages. It also describes the third generation of the approach, which is currently in manufacturing.
Technical Paper

Business and Process Improvements in the Investment Casting Sector

1998-06-02
981855
The Engine Supplier Base Initiative (ESBI) is a joint Air Force/Industry cooperative agreement aimed at achieving affordable precision investment cast airfoil and large structural components for man-rated gas turbine engines. The ESBI program will obtain these goals through the implementation of business and technology improvements with specific focus on increased product quality and reduced cycle time. This program has brought together competitors in the business to solve sector wide problems. This paper presents the framework of the teaming approach as well as results achieved in quality and cycle time improvements through technical and business process improvements.
Technical Paper

CCPL Flight Experiment: Concepts through Integration

1998-07-13
981694
This paper introduces the concepts utilized for the integration of a cryogenic capillary pumped loop into a flight experiment. The Cryogenic Capillary Pumped Loop (CCPL) version V, which was recently manufactured (9/97), is to be integrated into the Cryogenic Thermal Storage Unit (CRYOTSU) flight experiment as a secondary experiment. CRYOTSU, a Get-Away-Special (GAS) Can experiment, is currently manifested on STS-95 with an anticipated launch date of October 1998. The CCPL uses nitrogen as the working fluid with a 70-120 K operating temperature. The primary benefit of the CCPL is as a heat transport device in cryogenic bus systems. The primary issue of structurally supporting the CCPL while reducing parasitic heat loads will be detailed.
Technical Paper

Deployable Radiators - A Multi-Discipline Approach

1998-07-13
981691
The ADRAD deployable radiator is in development at Swales Aerospace to provide additional heat rejection area for spacecraft without envelope impact. The ADRAD design incorporates ALPHA loop heat pipes, an aluminum honeycomb radiator with embedded condenser, OSR optical coating, spherical bearing hinges, pyrotechnic release devices and snubbers. This paper describes the design of ADRAD to a set of “generic” GEO requirements, including a nominal heat rejection capacity of 1250 W. Thermal, structural and mechanism considerations are described along with the comprehensive systems approach necessary to produce an integrated subsystem.
Technical Paper

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-11-11
2008-01-2909
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. Hardware-in-the-loop (HIL) is being used to investigate aircraft power systems by using a combination of hardware and simulations. This paper considers three different real-time simulators in the same HIL configuration. A representative electrical power system is removed from a turbine engine simulation and is replaced with the appropriate hardware attached to a 350 horsepower drive stand. Variables are passed between the hardware and the simulation in real-time to update model parameters and to synchronize the hardware with the model.
Technical Paper

Effects of Transient Power Extraction on an Integrated Hardware-in-the-Loop Aircraft/Propulsion/Power System

2008-11-11
2008-01-2926
As aircraft continue to increase their power and thermal demands, transient operation of the power and propulsion subsystems can no longer be neglected at the aircraft system level. The performance of the whole aircraft must be considered by examining the dynamic interactions between the power, propulsion, and airframe subsystems. Larger loading demands placed on the power and propulsion subsystems result in thrust, speed, and altitude transients that affect the aircraft performance and capability. This results in different operating and control parameters for the engine that can be properly captured only in an integrated system-level test. While it is possible to capture the dynamic interactions between these aircraft subsystems by using simulations alone, the complexity of the resulting system model has a high computational cost.
Technical Paper

Earth Observing-1 Technology Validation: Carbon-Carbon Radiator Panel

2003-07-07
2003-01-2345
The Earth Observing-1 spacecraft, built by Swales Aerospace for NASA's Goddard Space Flight Center (GSFC), was successfully launched on a Boeing Delta-II ELV on November 21, 2000. The EO-1 spacecraft thermal design is a cold bias design using passive radiators, regulated conductive paths, thermal coatings, louvers, thermostatically controlled heaters and multi-layer insulating (MLI) blankets. Five of the six passive radiators were aluminum honeycomb panels. The sixth panel was a technology demonstration referred to as the Carbon Carbon Radiator (CCR) panel. Carbon-Carbon (C-C) is a special class of composite materials in which both the reinforcing fibers and matrix materials are made of pure carbon. The use of high conductivity fibers in C-C fabrication yields composite materials that have high stiffness and high thermal conductivity.
Technical Paper

Improvements to Spacecraft Thermal Model Interfacing

2003-07-07
2003-01-2603
A small SINDA/FLUINT logic routine was developed to improve upon standard spacecraft-to-instrument thermal model interface methodology for steady state analysis. Rather than the standard approach of providing backloads and/or conductive limits with uniform spacecraft temperatures, this methodology enables the instrument thermal engineer to make more informed design decisions by providing more information regarding the source and magnitude of the sink temperatures and backloads. The instrument thermal engineer can use the model information provided from the spacecraft thermal engineer to make more informed design decisions in subsequent analysis, and can be less dependent on the spacecraft thermal engineer.
Technical Paper

A New Spacecraft Radiative Thermal Model Exchange System

2003-07-07
2003-01-2604
The Spacecraft Radiative Thermal Model Exchange System is a technology developed for the bi-directional exchange of spacecraft radiative thermal models via the TMG thermal software package. It provides a means for quickly and accurately transferring models between TMG and theree of the major thermal radiation codes used in the spacecraft industry, particularly the ESARAD and Thermica packages, which are widely used by contractors to the European Space Agency, and the TSS code which is prevalent in the United States space industry. In order to reconcile element-based and primitives-based modeling approaches, this system includes an interactive primitives-based modeling system, enabling users to construct, import, and manipulate primitives-based radiation models in TMG.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Advanced Components and Techniques for Cryogenic Integration

2001-07-09
2001-01-2378
This paper describes the development and testing status of several novel components and integration tools for space-based cryogenic applications. These advanced devices offer functionality in the areas of cryogenic thermal switching, cryogenic thermal transport, cryogenic thermal storage, and cryogenic integration. As such, they help solve problems associated with cryocooler redundancy, across-gimbal thermal transport, large focal plane array cooling, fluid-based cryogenic transport, and low vibration thermal links. The devices discussed in the paper include a differential thermal expansion cryogenic thermal switch, an across-gimbal thermal transport system, a cryogenic loop heat pipe, a cryogenic capillary pumped loop, a beryllium cryogenic thermal storage unit, a high performance flexible conductive link, a kevlar cable structural support system, and a high conductance make-break cryogenic thermal interface.
X