Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Robust Semi-Active Ride Control under Stochastic Excitation

2014-04-01
2014-01-0145
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model.
Technical Paper

Mountain Braking Test Venue Study

2014-09-28
2014-01-2526
Assessment of braking performance that includes brake fade is a critical part of the evaluation of military light tactical vehicles as it is for conventional light cars and trucks. These vehicles are sometimes called upon to operate in severe mountain regions that challenge the braking performance well beyond the environment in which these vehicles are normally operated. The U.S. Army Test Operating Procedure (TOP) 2-2-608 includes a test schedule conducted in the mountainous region near Jennerstown, Pennsylvania. While this test procedure represents a typical mountain environment, it does not represent the most severe mountain descents that can be encountered across the United States. As a preliminary step to developing a representative severe mountain descent braking test, mountain roads throughout the United States were evaluated analytically to identify potential test venues.
X