Refine Your Search

Topic

Search Results

Technical Paper

Digital Road Load Data Acquisition Methodology for Automotive Durability Analysis

2021-09-22
2021-26-0344
Durability is an important indicator to measure the automobile quality and reliability. Automotive industry is striving to develop products having excellent performance to weight ratios and along with high safety standards. A successful product should have adequate robustness during normal customer operation and the ability to withstand high impact events without impairment of function or safety relevant damage. Road Load Data Acquisition (RLDA) along with efficient design and validation processes are, among others, critical factors for success in the automotive industry. Physical RLDA is expensive and time consuming, the prototype vehicles being costly and only available at a later stage in the vehicle development cycle. Component failures occurring on the proto test vehicles can prove to be a major setback, delaying the product launch by months. In order to overcome above challenge, this paper presents an innovative methodology to carry out Digital RLDA (dRLDA).
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Jute Fibre Based Composite for Automotive Headlining

2011-04-12
2011-01-0224
With increased awareness about environmental issues, the trend of automobile industry is to use ‘Recycled’ or ‘Biodegradable’ or ‘Energy Recoverable’ material. As a part of this programme, to make the vehicle ‘Green’ in nature, many automobile OEMs have taken the initiative to make use of natural fibre composite in their vehicles. Natural fibre based composite has been successfully proven for less critical as well as for semi-structural applications in an automobile. These typical applications are insulations, headlining, carpets, door pad etc. There is a demanding task for automotive OEMs to meet 85% Recyclability and 95% Recoverability targets by year 2015. To meet the RRR (Reuse, Recycle & Recover) and the ELV (End of Life) regulatory requirements, increased use of natural fibre based composite/ biopolymers is unavoidable. Natural fibre can offer potential advantages such as weight saving and improve overall green rating of the vehicle.
Technical Paper

Modeling and Optimization of Pneumatic Brake System for Commercial Vehicles by Model Based Design Approach

2017-09-17
2017-01-2493
Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

Recycling of Used Up Crankshaft Grinding Wheels

2012-04-16
2012-01-1060
For sustainability in automobile manufacturing, recycle, reuse, and repair of used up cutting tools is now an established process. Although many types of tools were designed for one time use and then throw, an increasing awareness of the impact on the natural resources have made manufacturers to put some of these back to use or sell it back to suppliers who have put up a mechanism to extract the elements e.g. Tungsten and use it for manufacturing of new tools. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1], by redesigning of a tool holder for the use of unused cutting edges [2] or reusing short length drills that are used in making of long oil holes in crank case, cylinder head, cam shaft or connecting rods [3]. This paper demonstrates successful use of used up crankshaft grinding wheels.
Technical Paper

Evaluation of Anti Scratch Additives on Polypropylene Compound

2013-04-08
2013-01-1391
Automotive Industry is constantly upgrading the value offered on their products at optimized cost. Scratch and mar resistance of interiors and exterior parts, is an important attribute which is linked to perceived quality and value offered to customers. Polypropylene material is optimum material of choice for these parts due to its unique advantages. However, filled polypropylene material has poor scratch and mar resistance. Many techniques for scratch resistance improvement are available such as additions of slip agents, co additives, special fillers, siloxanes, etc. However, some of them may offer some disadvantages like stickiness or tackiness on the surfaces. The choice depends on its effectiveness & cost. This paper deals with design of experiments to evaluate effectiveness of 4 types of additives and their optimum % to give scratch resistance improvement without having detrimental impact on other critical properties.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

Effect of Steering System Compliance on Steered Axle Tire Wear

2012-09-24
2012-01-1909
Subject paper focuses primarily on non uniform tire wear problem of front steered wheels in a pickup model. Cause and effect analysis complemented with field vehicle investigations helped to identify some of the critical design areas. Investigation revealed that steering geometry of the vehicle is undergoing huge variations in dynamic condition as compared to initial static setting. Factors contributing to this behavior are identified and subsequently worked upon followed by a detailed simulation study in order to reproduce the field failures on test vehicles. Similar evaluation with modified steering design package is conducted and results are compared for assessing the improvements achieved. In usual practice, it is considered enough if Steering Geometry parameters are set in static condition and ensured to lie within design specifications.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Methodology to Deduce the Testing Requirement of Twist Beam by Numerical Comparison of Roll Travel

2023-04-11
2023-01-0643
Twist-beam suspensions are an example of design solution presenting acceptable performance when applied to passenger cars & light vehicles and it can provide an optimal between cost & performance in the automotive market. For these reasons, twist beam is quite popular in use in rear suspension of light vehicles. In contrary to other types of suspension, the twist-beam has a flexible torsion beam connecting the swing arms. The study of the deformation of this flexible element becomes important to understand its performance and durability behavior. As the name signifies, twist beam major performance attribute is control of twist or opposite wheel travel arising from vehicle roll or road input. Current approach for the study this deformation is through FEA & Multi-body dynamics software tools.
Technical Paper

An Analytical Approach to Derive Free Package Space Requirement for Pedestrian Head Form

2019-01-09
2019-26-0013
Pedestrians are a vulnerable road user group, comprising 22% of global road traffic deaths [1]. In Japan, pedestrian fatalities accounted for 28% of total road fatalities and approximately 16% in Australia. These figures compare with 13% for the USA and 40-50% for India and Thailand [2]. Various pedestrian safety requirements are mandated in different markets in recent years worldwide. For pedestrian head-form, vehicle front-end styling and the free package space below bonnet plays a vital role in deciding the pedestrian head-form safety performance. Currently during initial phase of vehicle development, the free package space requirement is decided based on benchmark data. However, the benchmarking data does not give any insight into the physics involved and is subjective in nature as it varies from vehicle to vehicle. This paper gives an analytical approach for defining the free package space requirements for meeting the targeted pedestrian head form performance requirements.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

A Novel Technique to Establish Various Important Characteristic to Analyze Complete Hydraulic Power Steering System using Model Based Design Approach

2017-01-10
2017-26-0259
Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Simulator Development for Steer-by-Wire Concept Evaluation

2019-01-09
2019-26-0099
In the recent years steering feel characteristics have emerged as one of the important brand image attributes of automotive OEMs. Since past few decades, the hydraulic assisted steering system (HPAS) on which lot of research was done to tune the steering feel has been taken over by electric power assisted steering (EPAS) system. The EPAS primarily uses an electric motor controlled by an electronic control unit to assist the driver in maneuvering the vehicle. The next big leap in the steering system advancement is steer-by-wire (SbW) technology where the mechanical linkage between the steering wheel and the road wheels is eliminated. The advantages of this system are ease to use, elimination of noise-vibration-harshness of steering system caused by road forces, modularly of steering system for packaging, improved visibility to front-end displays and road ahead and a fun to drive concept.
X