Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling and Simulation of Clutch Damper Spring Saturation Phenomenon

2021-08-31
2021-01-1104
In modern automotive vehicles, there is a major concern for noise and vibrations generating from drivetrain. These noise and vibrations affect the passenger comfort and drivetrain parts life. Engine generates fluctuating torque and causes angular acceleration that results into torsional vibrations. These vibrations are transmitted to powertrain. Clutch disc consists damper springs and hysteresis which aids reducing these torsional vibrations. Based on the damper spring stiffness, one can control the resonance speed range and shift the resonance rpm out of driving speed range of engine. The resonance should not happen within driving speed range of vehicle to avoid large amplitude torsional vibration. But here limitation is put on the torque transmission capability of clutch for meeting vehicle requirements. As, low stiffness of damper spring requires large wind-up angle so, it is critical to decide its stiffness.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Digital Road Load Data Acquisition Methodology for Automotive Durability Analysis

2021-09-22
2021-26-0344
Durability is an important indicator to measure the automobile quality and reliability. Automotive industry is striving to develop products having excellent performance to weight ratios and along with high safety standards. A successful product should have adequate robustness during normal customer operation and the ability to withstand high impact events without impairment of function or safety relevant damage. Road Load Data Acquisition (RLDA) along with efficient design and validation processes are, among others, critical factors for success in the automotive industry. Physical RLDA is expensive and time consuming, the prototype vehicles being costly and only available at a later stage in the vehicle development cycle. Component failures occurring on the proto test vehicles can prove to be a major setback, delaying the product launch by months. In order to overcome above challenge, this paper presents an innovative methodology to carry out Digital RLDA (dRLDA).
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Jute Fibre Based Composite for Automotive Headlining

2011-04-12
2011-01-0224
With increased awareness about environmental issues, the trend of automobile industry is to use ‘Recycled’ or ‘Biodegradable’ or ‘Energy Recoverable’ material. As a part of this programme, to make the vehicle ‘Green’ in nature, many automobile OEMs have taken the initiative to make use of natural fibre composite in their vehicles. Natural fibre based composite has been successfully proven for less critical as well as for semi-structural applications in an automobile. These typical applications are insulations, headlining, carpets, door pad etc. There is a demanding task for automotive OEMs to meet 85% Recyclability and 95% Recoverability targets by year 2015. To meet the RRR (Reuse, Recycle & Recover) and the ELV (End of Life) regulatory requirements, increased use of natural fibre based composite/ biopolymers is unavoidable. Natural fibre can offer potential advantages such as weight saving and improve overall green rating of the vehicle.
Technical Paper

Modeling and Optimization of Pneumatic Brake System for Commercial Vehicles by Model Based Design Approach

2017-09-17
2017-01-2493
Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

Evaluation of Anti Scratch Additives on Polypropylene Compound

2013-04-08
2013-01-1391
Automotive Industry is constantly upgrading the value offered on their products at optimized cost. Scratch and mar resistance of interiors and exterior parts, is an important attribute which is linked to perceived quality and value offered to customers. Polypropylene material is optimum material of choice for these parts due to its unique advantages. However, filled polypropylene material has poor scratch and mar resistance. Many techniques for scratch resistance improvement are available such as additions of slip agents, co additives, special fillers, siloxanes, etc. However, some of them may offer some disadvantages like stickiness or tackiness on the surfaces. The choice depends on its effectiveness & cost. This paper deals with design of experiments to evaluate effectiveness of 4 types of additives and their optimum % to give scratch resistance improvement without having detrimental impact on other critical properties.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
X