Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Modeling and Simulation of Clutch Damper Spring Saturation Phenomenon

2021-08-31
2021-01-1104
In modern automotive vehicles, there is a major concern for noise and vibrations generating from drivetrain. These noise and vibrations affect the passenger comfort and drivetrain parts life. Engine generates fluctuating torque and causes angular acceleration that results into torsional vibrations. These vibrations are transmitted to powertrain. Clutch disc consists damper springs and hysteresis which aids reducing these torsional vibrations. Based on the damper spring stiffness, one can control the resonance speed range and shift the resonance rpm out of driving speed range of engine. The resonance should not happen within driving speed range of vehicle to avoid large amplitude torsional vibration. But here limitation is put on the torque transmission capability of clutch for meeting vehicle requirements. As, low stiffness of damper spring requires large wind-up angle so, it is critical to decide its stiffness.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Cold Idle Gear Rattle in Manual Transmission Passenger Car-Temperature Based Phenomenon

2020-09-15
2020-01-2245
Gear rattle is due to impact noise of unloaded gears in transmission having freedom to move in backlash region. Engine order vibrations in the presence of backlash in meshing pairs induce the problem. It is a system behavior wherein flywheel torsional vibrations, the pre-damper characteristics and transmission drag torque plays a vital role in an engine idle condition (hot & cold). Idle rattle is a severe issue, which is highly noticeable in cold condition or after 1st engine crank. Gear rattling observed in idle condition is idle gear rattle or neutral gear rattle, specifically in cold condition is a “Cold idle rattle” and this is one of the critical noise parameters considered for entire vehicle NVH. Damper mechanism in the clutch, is used to serve better isolation (by reducing the input excitation to transmission parts) of vibrations between engine and transmission their by reducing gear rattle intensity.
Technical Paper

Investigation and Resolution of Gear Slippage Issue in Manual North-South Transmission

2020-09-15
2020-01-2247
Gearbox and driveline durability is always been a sensitive subject from both end user and manufacturer’s point of view. Since powertrain is heart of vehicle, naturally it is expected to long last and perform satisfactorily for the entire vehicle life. Sometimes the driveline aggregates especially gearbox might face some issues because of various factors, but this is distinctively noted by the driver since it is one of the important touch point of the vehicle. The gear slippage is a very typical phenomenon observed in automotive gearbox. The issue of gear slippage is very sensitive because it leads to compromising safety of the driver, also it deteriorates gear shift quality and thereby performance of the vehicle. Generally, gear slippage is not observed during end of line testing or during early kilometers of vehicle. It is observed after some thousand kilometers, that to initially gear slippage is not observed consistently and that’s why it is difficult to identify at early stage.
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Evaluation of Interdependent Behavior of Dual Mass Flywheel (DMF) and Engine Starting System

2010-04-12
2010-01-0188
Interdependency of automotive transmission aggregates on electrical/ electronics systems is increasing day by day, offering more comfort and features. For a system integrator, it becomes very much important while selecting/designing any such component to take into consideration the relationship between such interdependent components from performance as well as endurance point of view. DMF failures due to inadequate starting system, is a major stumbling block in development of DMF for a particular vehicle application. The interface of DMF and starting system of a vehicle makes it essential to consider the effect of one on another. The study shows that the majority of DMF failures happen because of resonance phenomenon in the DMF during engine starting. The improper selection of starter motor makes the DMF more vulnerable for such failures.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

Critique of Torsional Vibration Damper (TVD) Design for Powertrain NVH

2017-01-10
2017-26-0217
Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
Technical Paper

A Method To Evaluate Passenger Thermal Comfort In Automobile Air Conditioning Systems

2017-01-10
2017-26-0150
In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
Technical Paper

Simulating Bowden Cable Routing on Virtual Vehicle and Design Guidelines to Achieve the Best Cable Performance

2016-09-27
2016-01-8060
There has been immense focus on Gear Shift Quality as it is seen as an important factor for subjective evaluation of driving comfort of a vehicle with manual transmission. Synchronizer and driveline stiffness optimization is often the only area of focus for gear shift quality during early design stage. Proven Simulation models are already available for predicting the effect of synchronizer and driveline stiffness. Though Gear shift cable also has a significant effect on gear shift quality, neither design guidelines nor simulation models are available for predicting gear shift cable performance. Designers have relied on physical approach to establish cable routing, since cable routing cannot be predicted on virtual vehicle. In design phase cable routing is imagined and modeled in CAD using constrained curve geometry and later on established by physical trials on vehicle with various cable lengths, routing paths and clamp positions.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
X