Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of Brake Pedal Feel and Performance for Dual Air Over Hydraulic System on Light Commercial Vehicles

2010-10-05
2010-01-1888
In current scenario, Light Commercial Vehicle segment (7 ton - 9.6 ton) is gradually experiencing a shift in the focus from being just a goods carrier to a vehicle which is developed to take care of driver's safety and comfort in terms of better ergonomics and aesthetics. As compared to their conventional counterparts the new generation Light Commercial Vehicles are better equipped and tuned to cater to the changing needs of the consumers. In view of this, refinement at the sub system level is becoming far more critical. On the same lines, the present work discusses a refined brake system for Light Commercial Vehicles where the conventional pneumatic system is replaced with Dual Air Over Hydraulic (DAOH) to achieve cost and weight advantages without compromising on its performance. However, during the development process, a lot of issues were observed with respect to the braking performance and the brake pedal feel.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Reduction of Steering Effort and Turning Circle Diameter for Mechanical Steering in Light Commercial Vehicles for Better Driver Comfort

2011-09-13
2011-01-2147
New generation light commercial vehicles are expected to have lower steering effort, high self centering and less turning circle diameter covering large variety of wheelbases from 2.8 m to 4.5 m even with mechanical steering and keeping same number of total turns of steering wheel compared to old generation light commercial vehicles. To address above requirements, below parameters related to steering and rigid front axle were studied. 1 Caster angle of front axle 2 Steering compliance and Steering ball joint articulation angle 3 Front axle kingpin axial play 4 Steering gearbox ratio 5 Pitman arm length The effect of above parameters was studied in isolation and combination. This optimization has resulted in least steering effort and least turning circle diameter in light commercial vehicles with mechanical steering and option of power steering could be eliminated for cost reduction.
X