Refine Your Search

Topic

Search Results

Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Thermal Management System and Performance Characteristics of Electric Vehicle

2020-08-18
2020-28-0022
Thermal Management System (TMS) is equally or more important part of Battery Electric (BEV)/Hybrid Electric vehicle (HEV) than an internal combustion engine (ICE) vehicle. In an ICE vehicle, TMS ensures performance of power train/engine, after treatment/exhaust system and HVAC (Climate control) whereas it connected with safety and Range anxiety elimination additionally for the case of Electric Vehicle. Electric powertrain is not a new technology to the world but the technology is evolving in last few decades, to overcome the cost and make it commercially viable, charging infrastructural development and elimination of Range Anxiety. In last few years, Indian automotive industry has taken some major steps towards electrification journey for both passenger car and commercial vehicle. In BEVs, Battery Cooling or Battery thermal management System (BTMS or BCS) and Traction cooling system (TCS) are couple with nearly conventional HVAC circuit used in any ICE vehicle.
Technical Paper

Design of Door Latching and Locking Systems for Crashworthiness

2008-01-09
2008-28-0058
Several sub-systems in a vehicle contribute to vehicle crashworthiness. One such system is the door latch and locking system. Correct functioning of this system is critical for facilitating occupant evacuation and preventing occupant ejection during crashes. Special care needs to be taken during vehicle safety development to achieve the desired intent. In crashes, it is observed that door opening or locking mainly occurs on account of inertial loads and deformation of the door structure. This paper studies the possible failure modes and their causes. Some likely solutions have also been discussed with a case study.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Thermal Management in Engine Compartment for Efficient Working of the Intercooler on a Rear Engine Vehicle

2012-04-16
2012-01-1044
This paper is related to a vehicle with rear engine which is turbo charged and inter cooled. Due to packaging constraints the intercooler was placed in front of turbocharger and was exposed to hot air radiated out from the turbo charger. This was in turn reducing the efficiency of the intercooler. In such scenario, it is essential to shield the turbo charger from the intercooler for proper hot air management. Also rear engine vehicles don't have the benefit of ram air affect. This necessitates increasing the air entering in to the core of the intercooler. Both the above mentioned issues associated with such a vehicle was resolved by ensuring that the hot air from turbo-charge is guided away from the intercooler as well as the air flow to Intercooler is increased. Guiding or throwing out the hot air away from Intercooler was done by introducing a heat shield or a baffle between the two.
Technical Paper

Optimization of an Air Intake System to Reduce Multiple Whoosh Noises from an Engine

2013-04-08
2013-01-1714
The direct injection common rail technology coupled with variable geometry turbocharger on the modern diesel engine has improved the diesel engine performance (power and torque) greatly as compared to the conventional diesel engine. Diesel engine performance is greatly dependent on the abundant air availability. And it is facilitated by Variable Geometry Turbocharger (VGT) in modern engines. The engines with variable geometry turbocharger offer quick response to the demand in various driving conditions especially in transient driving conditions. During transient driving conditions, the air intake system experiences a rapid air flow pressure and velocity changes. The pressure differentials across air intake system during transient events allow flow direction changes in the system. This kind of phenomenon generates unusual “Multiple Whoosh” noises in the air intake system of the sport utility vehicle engine.
Technical Paper

Design and Development of a Novel Air-Cycle Refrigeration System for Passenger Vehicles

2022-11-09
2022-28-0447
Current Air Conditioning (AC) system uses hydrofluorocarbons (HFC) as refrigerant to transfer heat from cabin and cool the passengers. However, most refrigerants used today have severe environmental effects due to high global warming potential leading to global warming effects. Montreal Protocol and Kigali amendment calls for all nations to reduce refrigerant usage and transport sector being one of the main consumer of refrigerant, regulations regarding refrigerant usage and emission are becoming more stringent day by day. In this paper, a novel air-cycle refrigeration system has been designed and also tested for passenger vehicle applications. Automobile industry in developed countries has pivoted to R1234yf refrigerant for the most part, and has also rolled out R744 refrigerant for mass production to limited extent, which are in much lower Global warming potential (GWP) range than R134a.
Technical Paper

Simulation of Intake System for Two Cylinder Naturally Aspirated In-Direct Injection Engine

2004-09-27
2004-32-0030
This paper summarizes the approach towards the process of computational simulation of the intake system and its experimental investigation. It is an important aspect to improve breathing of the diesel engines for performance, torque smoothening and emissions. This can be achieved by optimizing intake system parameters such as plenum volume, diameters, length of ports & runners, etc., which directly correlates the volumetric efficiency, thereby the performance of the engine. Keeping the objective of improving volumetric efficiency to achieve low-end performance, the intake system design optimization has been done on a twin cylinder, four cycle, compression ignition, In-Direct Injection (IDI) engine. For the simpler intake system, the primary pipe length & diameter can be calculated by mathematical formula applying Helmholtz Resonator principle. But, for a complex intake system, simulation software is used here.
Technical Paper

Development of Dc Motor based E-Shift Mechanism for Manual Transmission

2015-04-14
2015-01-1095
Transmission designs over the years have evolved significantly achieving more efficiency in terms of fuel economy, comfort and reduction in emissions. This paper describes a Dc motor based E-shift mechanism which automates an existing manual transmission and clutch system to give comfort and ease for gear shifting. The basic idea of E-shift mechanism is to make hassle free gear shifting of manual transmission at sole command of driver without any control strategy for automatic shifting as in case of Automated Manual transmission (AMT). The E-shift mechanism will eliminate the manual efforts required for pressing clutch pedal and shifting gear, giving more ease while driving. The developed mechanism can be retro fitted on existing manual transmission without any major modification at lower cost. The E-shift mechanism uses two actuators for gear shifting and one actuator for clutch actuation.
Technical Paper

Optimization of State Machine Architecture for Automotive Body Control

2016-02-01
2016-28-0233
The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
Technical Paper

Optimization of Multiple Injection Strategies to Improve BSFC Performance of a Common Rail Direct Injection Diesel Engine

2016-02-01
2016-28-0002
Present stringent emissions norms; global fossil fuel energy scenario and competitive automotive market has driven many researches on diesel engine combustion in both academic and industry level. This work is an effort to improve the fuel economy without compromising emissions level of typical six cylinders inline CRDI diesel engine using optimized multiple injection strategy. There was some unusual nature of BSFC (Brake specific fuel consumption) observed on such typical engine. Also, Torque curve was not up to the mark for better drivability. This engine is equipped with most familiar in cylinder NOx reduction device namely EGR and multiple injections. There were few experiments conducted on same engine to optimize the BSFC using different multi injection strategies in line to marginal change of injection timing with respect to crank angle. Total exercise was done following partial Design of Experiments (DOE). EGR % has kept unaltered.
Technical Paper

Multivariate Analysis to Assess the Repeatability of Real World Tests

2016-04-05
2016-01-0320
In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
Technical Paper

Dissimilar Resistance Spot Welding of Steel and Aluminium Alloy Using Ni Interlayer for Automobile Structure

2023-05-25
2023-28-1355
A lightweight multi-material combination of steel and aluminium alloy (Al) is becoming a novel approach towards environmentally sustainable transport systems. Studies show that 10% reduction of vehicle weight results into 3-7% reduction in specific fuel consumption in IC engines and a 13.7% improvement in electric range for electric vehicles. However, dissimilar welding of Al/steel is a key challenge because of incompatible thermo-physical properties (melting point, thermal conductivity, and coefficient of thermal expansion) and low miscibility between Al and steel. The formation of brittle and hard Al-steel intermetallic compound (IMC) at the joint interface is the major concern for dissimilar welding of Al/steel. In this work, efforts are made to check the feasibility of Ni interlayer to control IMC formation at the interface of Al/steel dissimilar welded joint. Resistance spot welding is used to join low carbon steel CR01 and Al AA6061-T6 with pure Ni interlayer.
Journal Article

Adopting the Features of Digital Rate Shaping (DRS) with Multiple Injections Strategy on Small 2 Cylinder Common Rail BSVI Engine to Improve FE

2021-09-22
2021-26-0061
The Common Rail fuel injection System (CRS) has completely changed the whole diesel engine combustion cloud dynamics and enhanced the applicability of diesel engines further with a motto of providing a more cleaner sky and greener earth. The most cutting-edge technological developments made in CRS and EGT system enables OEMs to achieve further more stringent emission norms and adopt the environmental protection compliances. Today’s CRS systems are the most advanced generation fuel injection systems providing further high injection pressures, wide multiple injections capability with shorter dwell periods enabling real smoother Digital Rate Shaping (DRS) and injection control that benefits not only the engine combustion performance but also enables smarter thermal management of modern exhaust systems while meeting stringent emission compliances and achieving future CO2 reductions goal.
X