Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Influence of Asymmetrical Design Parameter on Vehicle Pull During Brake Application

2021-09-22
2021-26-0354
The steering system of commercial vehicle is asymmetrical to left side and rightside, this causes vehicle pull during braking application. This directly affects the safety of the driver and vehicle ride & handling performance. In a similar way, the asymmetrical suspension parameter unintentionally set during vehicle assembly arealso major contributors for creating a vehicle pull. After application of brake force, the tire contact patch creates a moment about the kingpin axis. However, this moment generated is different on left and right-side due to asymmetrical design parameters resulting in vehicle deviation from its intended path. A large deviation may lead to on road accidents. Some of the major factors which are responsible for the vehicle pulling phenomenon are the asymmetrical steering system compliance, asymmetrical suspension geometry, tire, braking system, road camber etc.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

Design of Hybrid Air Conditioning System Using Phase Change Material for Commercial Sleeper Vehicles

2022-11-09
2022-28-0448
Unfavorable climates, fatigue, safety & deprived sleep of driver’s leads to use of AC system for their quick thermal comfort during night with engine ON. This scenario is very critical from a human’s safety & vehicle functionality point of view. This also consumes an additional 10-15% of fuel requirements in AC running conditions. So, to address the social problems of driver’s sleep and pollution-free environment by reducing the use of fossil fuels, there is a need for alternative techniques for air cooling which work during engine OFF condition. Various alternative options for air cooling have been reviewed. Accordingly, the packaging flexibility of phase change material (PCM) technology makes it easy to implement, yet effective usage of large quantity stored PCM, needs optimization. This paper proposes a design of a hybrid air conditioning system for sleeper commercial vehicles using a combined conventional compression and phase change material.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Journal Article

Application of Phase Change Materials (PCM) for Reducing Cabin Heat Load

2020-08-18
2020-28-0037
In regions like Indian Subcontinent, Gulf or Saharan & Sub-Saharan Africa, where the sunshine is abundant almost all year round, air-conditioning is an important aspect of vehicles (passenger cars, buses etc.). Higher heat means higher cooling demand which in turn means bigger AC system. Like other auxiliaries, AC compressor is a parasitic load on the engine. The best way to beat heat and reduce cabin heat load is to stop heat build-up itself. The present paper explores one such means of reducing cabin heat build-up by leveraging latent heat properties of phase change materials and thus improving the air condition performance. With the help of a case study this paper aims at detailing comprehensive effect of phase change material (PCM) and its application on the heat build-up inside the cabin of a vehicle, the air conditioning cooling performance, the time required to achieve comfort temperature, work of compression performed by AC compressor and COP.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

2017-11-27
2017-01-7011
Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

A Comparative Study of Vehicle Handling Characteristics of Commercial Vehicle with Innovative Nonlinear Stiffness Mono-Leaf Suspension & Parabolic Spring Suspension through Simulation

2024-01-16
2024-26-0057
In recent years due to significant increased cost of raw material, fuel and energy, vehicle cost is increased. As vehicle cost is one of the major factors that attracts prospective buyers, it has created specific demand for low weight and low-cost components than traditional components with better performance to meet customer expectations. Suspension is one of the critical aggregates where lot of material is used and reduction in weight tends to give lot of cost benefit. As suspension system derives vehicle’s handling performance, it has to be ensured that handling performance of vehicle is maintained the same or made better while reducing weight of the suspension. Advancements in simulation capabilities coupled with manufacturing technology has enabled development non-traditional leaf springs. One of such springs is mono-leaf spring without shackle. This type of leaf spring provides advantages such as low weight and nonlinear stiffness.
X