Refine Your Search

Topic

Author

Search Results

Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 2 Estimation of Local Ventilation Efficiency and Inhaled Air Quality

2008-04-14
2008-01-0731
In order to evaluate the ventilation characteristics of car interior, a model experiment was performed. Part 1 deals with the air flow properties in a half-scale car model. In this paper, a trace gas experimental method equipped with Flame Ionization Detector (FID) systems is introduced to examine the local ventilation efficiency and inhaled air quality in the car, which was ventilated at a flow rate of 100 m3/h and kept in an isothermal environment of 28°C in the experiment. Here, ventilation efficiency was evaluated by means of the Scales for Ventilation Efficiencies (SVEs), and inhaled air quality in terms of the influences of passive smoke and foot odor was evaluated by means of the Contribution Ratio of Pollution source 1 (CRP1). Therefore, calculation methods using trace gas concentration values were suggested for these indices, which were proposed based on the Computational Fluid Dynamics (CFD) technique.
Technical Paper

Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

2007-10-29
2007-01-4008
The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline.
Technical Paper

Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties

2007-07-23
2007-01-1921
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Evaporative Leak Check System by Depressurization Method

2004-03-08
2004-01-0143
Changes to OBDII regulations in North America are requiring more frequent leak checks to the evaporative emissions system. Conventional methods are unable to comply with the required 0.26 performance ratio due to various factors such as unstable tank pressure and fuel evaporation. These strict regulations require an innovative detection device. Utilizing a vacuum pump, a leak check module with high detection frequency, leak diagnostic accuracy, and reliability has been developed. In the present paper, the details of ELCM based on the depressurization method are reported together with the results of study on the pressurization method.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

High-Precision Modeling of Heat Exchanger Core on Vehicle Engine Room Airflow Analysis

2017-03-28
2017-01-0129
In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
Technical Paper

Numerical Modeling of International Variations in Diesel Spray Combustion with Evaporation Surrogate and Virtual Species Conversion

2017-03-28
2017-01-0582
A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
Technical Paper

4th Generation Diesel Piezo Injector (Realizing Enhanced High Response Injector)

2016-04-05
2016-01-0846
Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Impact of Substrate Geometry on Automotive TWC Gasoline (Three Way Catalyst) Performance

2017-03-28
2017-01-0923
Tightening global emissions standards are driving automotive Original Equipment Manufacturer’s (OEM’s) to utilize Three Way Catalyst (TWC) aftertreatment systems that can perform with greater efficiency and greater measured control of Precious Group Metals (PGM) use. At the same time, TWC aftertreatment systems minimize exhaust system pressure drops. This study will determine the influence of catalyst substrate cell geometry on emission and PGM usage. Additionally, a study of lightoff and backpressure comparisons will be conducted. The two substrate configurations used are hex/750cpsi and square/750cpsi.
Technical Paper

Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

2017-03-28
2017-01-0913
In order to comply with emission regulation, reach their profitability targets and minimise the in-use cost of their vehicles, OEMs are seeking solutions to optimise their aftertreatment systems. For Selective Catalytic Reduction (SCR) system engineers, one of the most important challenges is to reduce the system's cost, while keeping its high level of NOx emission reduction performance. Ways to achieve this cost reduction include 1. using an engine out NOx estimation model instead of a NOx sensor upstream of the SDPF (DPF coated with SCR) catalyst and 2. eliminating the Ammonia Slip Catalyst (ASC) downstream of the SDPF catalyst. Achieving these challenging targets requires actions on the complete SCR system, from the optimisation of mixing and uniformity in the SDPF catalyst to the development of robust controls. To face these challenges, a novel exhaust reverse flow concept with a blade mixer was developed.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

2011-09-11
2011-24-0181
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
Technical Paper

Accumulation Mechanism of Gasoline EGR Deposit

2017-03-28
2017-01-0806
Exhaust Gas Recirculation (EGR) systems reduce exhaust emissions and improve fuel efficiency. Recently, the number of EGR system installed vehicles has been increasing, especially for gasoline engine systems. One of the major causes of decreasing EGR function is deposit accumulation on a gas passage. The deposit consists mainly of hydrocarbons which are degradation products of fuel, thus the amount of deposit seems to be strongly affected by fuel compositions. Unfortunately there are not as many studies on EGR deposits with gasoline fuel as there are with diesel fuel. In this study, the influence of gasoline fuel compositions, especially aromatics which are major components of EGR gas, on chemical structures of the deposit were investigated. To clarify the accumulation mechanism of EGR deposits, a thermal oxidative degradation test with an autoclave unit and an actual gasoline engine test were employed.
Technical Paper

Pressure Sensor Module for High Temperature,High Pressure, and Quick Response

2018-04-03
2018-01-0759
According to the advance of engine control development, demands for direct sensing of physical quantity have been growing. Regarding pressure sensing, key properties for direct sensing are robustness against high temperature and pressure, and response time in addition to accuracy. In this work, a pressure sensor module with these key properties was developed. First of all, a piezoelectric device was selected as a suitable sensing principle for the required properties because of its thermally stable piezoelectric effect and potential for simple installation structure. Regarding robustness against temperature, the sensor module was designed to form thermal isolation layer with outer housing which is optimized according to its application. Regarding robustness against pressure and response time, breakage of the piezoelectric element is the main technical issue.
Technical Paper

Strategies on Methane Slip Mitigation of Spark-Ignition Natural Gas Engine during Transient Motion

2021-06-02
2021-01-5062
The liquefied natural gas (LNG)-fueled ships were provisioned to meet the strict emission legislation in the marine application since 2000. However, the scientific approach of burning the low-emission natural gas in lean combustion uncovered that the engine suffers from high methane slip emission. Serious questions are raised about the quantity of methane slip during marine conditions when the load varies in multiple frequencies and amplitudes. Previous studies by these authors explained how methane slip increases during load oscillation. This paper examined several practical methods to reach stable combustion in transient conditions to reduce the methane slip. Employing Proportional-Integral-Derivative (PID) controllers in a closed loop, implementing open-loop lookup tables, model predictive controller (MPC), and an innovated solenoid method are performed in a high-fidelity medium-speed natural gas spark-ignition (SI) engine model.
X