Refine Your Search

Topic

Search Results

Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Technical Paper

Experimental and Numerical Investigations for Analysis of Temperature Rise on the Traction Contact Surface of Toroidal Cvts

2009-06-10
2009-01-1661
Temperature rise in traction contact areas is one important factor that influences traction coefficient. For examining the influence of temperature rise on the traction coefficient, it is necessary to first clarify temperature rise in the traction contact area. In this article, temperature rise in the traction contact areas is discussed in three major parts. First, measured temperature distributions on the traction contact surface under conditions of high rolling speed and minute amounts of sliding and spinning, such as those which are found in a toroidal CVT, using a twin-disc test machine and thin-film platinum sensors are shown. Second, the above experimental results are compared with results from a traction analysis program (REIB99). Characteristics of calculated results were qualitatively in good agreement with measured results.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Method to Derive Monetarily Effective Parameters for ADAS at Parking and Maneuvering

2018-04-03
2018-01-0605
The effectiveness of ADAS addressing property damage has an increasing impact on car manufacturers, insurers and customers, as accident avoidance or mitigation can lead to loss reduction. In order to obtain benefits, it is essential that ADAS primarily address monetarily relevant accident scenarios. Furthermore, sensor technologies and algorithms have to be configured in a way that relevant accident situations can be sufficiently avoided at reasonable system costs. A new methodology is developed to identify and configure monetarily effective parameters for ADAS during parking and maneuvering. ADAS parameters e.g. relevant accident scenarios, required crash avoidance speeds and different sensor layouts are analyzed and evaluated using a real-world in-depth accident database of insurance claims provided by Allianz Center for Technology and Allianz Automotive Innovation Center. For this purpose, a sensitivity analysis is conducted to identify most monetarily effective accident scenarios.
Technical Paper

Artificial Intelligence for Combustion Engine Control

1996-02-01
960328
Existing electronic combustion engine control systems only guarantee a desired air-to-fuel-ratio λ in stationary operation. In order to achieve the desired λ also in in-stationary use of the engine, it is necessary to use new-technology-based control systems. Artificial Intelligence provides methods to cope with difficulties like wide operation range, unknown nonlinearities and time delay. We will propose a strategy for control of a Spark Ignition Engine to determine the mass of air inside the combustion chambers with the highest accuracy. Since Neural Networks are universal approximators for multidimensional nonlinear static functions they can be used effectively for identification and compensation purposes of unknown nonlinearities in closed control loops.
Journal Article

Identification of In-Cylinder Aerosol Flow Induced Emissions due to Piston Ring Design in a DISI Single Cylinder LV Engine Using Oxygenated Synthetic Fuels

2021-04-06
2021-01-0625
In the near future, pollutant and GHG emission regulations in the transport sector will become increasingly stringent. For this reason, there are many studies in the field of internal combustion research that investigate alternative fuels, one example being oxygenated fuels. Additionally, the design of engine components needs to be optimized to improve the thresholds of clean combustion and thus reduce particulates. Simulations based on PRiME 3D® for dynamic behaviors inside the piston ring group provide a guideline for experimental investigation. Gas flows into the combustion chamber are controlled by adjusting the piston ring design. A direct comparison of regular and synthetic fuels enables to separate the emissions caused by oil and fuel. This study employed a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo).
Technical Paper

Algorithm-Calculated Multiple Injection Patterns to Meet Future Requirements to Direct-Injection Spark Ignited Engines

2022-08-30
2022-01-1068
Future emission regulations require further development for internal combustion engines operating on gasoline. To comply with such regulations and simultaneously improve fuel efficiency, major development trends are found in reduced displacements, increased compression ratios and turbocharging. To counteract such engines’ increased tendencies to knocking combustion, direct fuel injection systems are necessarily applied. Compared to standard port fuel injection, direct injection systems cause increased particle emissions. State-of-the-art magnet-driven gasoline direct injectors are capable of realizing various injection events of small injected mass per event and short dwell time between one another. Thereby, they facilitate multiple injection strategies, able to overcome the drawbacks of direct injection systems in relation to exhaust emissions. However, the full potential of multiple injection strategies is not yet taken advantage of.
Technical Paper

Highly Efficient and Clean Combustion Engine for Synthetic Fuels

2023-04-11
2023-01-0223
This paper provides an overview of possible engine design optimizations by utilizing highly knock-resistant potential greenhouse gas (GHG) neutral synthetic fuels. Historically the internal combustion engine was tailored to and highly optimized for fossil fuels. For future engine generations one of the main objectives is to achieve GHG neutrality. This means that either carbon-free fuels such as hydrogen or potential greenhouse gas neutral fuels are utilized. The properties of hydrogen make its use challenging for mobile application as it is very diffusive, not liquid under standard temperature/pressure and has a low volumetric energy density. C1-based oxygenated fuels such as methanol (MeOH), dimethyl carbonate (DMC) and methyl formate (MeFo) have properties like conventional gasoline but offer various advantages. Firstly, these fuels can be produced with renewable energy and carbon capture technologies to be GHG neutral.
Technical Paper

Identification of Aging Effects in Common Rail Diesel Injectors Using Geometric Classifiers and Neural Networks

2016-04-05
2016-01-0813
Aging effects such as coking or cavitation in the nozzle of common rail (CR) diesel injectors deteriorate combustion performance. This is of particular relevance when it comes to complying with emission legislation and demonstrates the need for detecting and compensating aging effects during operation. The first objective of this paper is to analyze the influence of worn nozzles on the injection rate. Therefore, measurements of commercial solenoid common rail diesel injectors with different nozzles are carried out using an injection rate analyzer of the Bosch type. Furthermore, a fault model for typical aging effects in the nozzle of the injector is presented together with two methods to detect and identify these effects. Both methods are based on a multi-domain simulation model of the injector. The needle lift, the control piston lift and the pressure in the lower feed line are used for the fault diagnosis.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
Technical Paper

Experimental Investigation on the Influence of Brake Mean Effective Pressures up to 30 bar on the Behavior of a Large Bore Otto Gas Engine

2019-12-19
2019-01-2224
For large bore Otto gas engines a high specific power output and therefore high engine load promises a rise in engine efficiency on one hand and on the other hand a reduction of the performance-related investment. However, this can negatively affect the emissions performance, operating limits especially in regards to knocking, and component life. For this reason at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM) experiments with a 4.77 l single-cylinder research engine were carried out to investigate the boundary conditions, potentials and downsides of combustion processes with a brake mean effective pressure beyond current series engines and higher than 30 bar. The objective in this investigations was to achieve BMEP > 30 bar with an engine configuration that widely represents the current series-production status. Hence, an unscavenged prechamber spark plug, a series Piston and Valve timing were used.
Technical Paper

Investigation of the High-Pressure-Dual-Fuel (HPDF) combustion process of natural gas on a fully optically accessible research engine

2019-12-19
2019-01-2172
In the “high-pressure-dual-fuel” (HPDF) combustion process, natural gas is directly injected into the combustion chamber with high pressure at the end of the compression stroke, and burned in a diffusion flame similar to conventional diesel combustion. As natural gas does not self-ignite when injected into hot air, a small amount of diesel fuel is injected directly before the gas injection to provide an ignition source for the gas jets. The HPDF combustion process has the potential to substantially reduce methane slip compared to today’s state of the art premixed lean burn gas engines, and furthermore, phenomena like knocking or misfire can be avoided completely. In this paper, the influences of in-cylinder air density and swirl motion on HPDF combustion is studied via high-speed recordings in a fully optically accessible 4.8 Liter single-cylinder research engine.
Technical Paper

Experimental Investigation of a Control Strategy Based on Combustion Stability and Combustion Phasing for a Multi-Cylinder Engine with Fueled Pre-Chambers and Cylinder Pressure Transducers

2021-04-06
2021-01-0639
One way of increasing the efficiency of a gasoline engine is to operate it in lean-burn mode. However, a lean mixture in the combustion chamber reduces its ignitability, which leads to poor combustion stability and even misfires. This investigation presents a solution to this problem using an active pre-chamber for each cylinder, into which fuel can be injected separately and in which ignition takes place. This increases the ignition energy in the main combustion chamber, thus enabling stable combustion. Cylinder-specific feedback control of the fuel quantity injected into the pre-chambers was implemented on the basis of measured cylinder pressures so as to compensate for injector component deviations, achieve maximum efficiency, and prevent increased emissions. Since combustion delay and burn duration are dependent on the fuel mass injected into the pre-chamber, an additional feedback control for the center of combustion (MFB50) was integrated along with the fuel quantity controller.
Journal Article

A New Cavitation Algorithm to Support the Interpretation of LIF Measurements of Piston Rings

2020-04-14
2020-01-1091
Laser induced fluorescence (LIF) is used to investigate oil transport mechanisms under real engine conditions. The engine oil is mixed with a dye that can be induced by a laser. The emitted light intensity from the dye correlates with the residual oil at the sensor position and the resulting oil film thicknesses can be precisely determined for each crank angle. However, the general expectation is not always achieved, e.g. an exact representation of piston ring barrel shapes. In order to investigate the responsible lubrication effects of this behavior, a new cavitation algorithm for the Reynolds equation has been developed. The solution retains the mass conservation and does not use any switch function in its mathematical approach. In contrast to common approaches, no vapor-liquid ratio is used, but one or several bigger bubbles are approximated, as have been observed in other experiments already.
Technical Paper

Trailer Electrification – A HIL Approach for MPC Powertrain Control to Ensure Driver Safety in Micromobility

2023-08-28
2023-24-0180
Bicycle-drawn cargo trailers with an electric drive to enable the transportation of high cargo loads are used as part of the last-mile logistics. Depending on the load, the total mass of a trailer can vary between approx. 50 and 250 kg, potentially more than the mass of the towing bicycle. This can result in major changes in acceleration and braking behavior of the overall system. While existing systems are designed primarily to provide sufficient power, improvements are needed in the powertrain control system in terms of driver safety and comfort. Hence, we propose a novel prototype that allows measurement of the tensile force in the drawbar which can subsequently be used to design a superior control system. In this context, a sinusoidal force input from the cyclist to the trailer according to the cadence of the cyclist is observed. The novelty of this research is to analyze whether torque impulses of the cyclist can be reduced with the help of Model Predictive Control (MPC).
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
X