Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Validating an Approach to Assess Sensor Perception Reliabilities Without Ground Truth

2021-04-06
2021-01-0080
A reliable environment perception is a requirement for safe automated driving. For evaluating and demonstrating the reliability of the vehicle’s environment perception, field tests offer testing conditions that come closest to the vehicle’s driving environment. However, establishing a reference ground truth in field tests is time-consuming. This motivates the development of a procedure for learning the vehicle’s perception reliability from fleet data without the need for a ground truth, which would allow learning the perception reliability from fleet data. In Berk et al. (2019), a method based on Bayesian inference to determine the perception reliability of individual sensors without the need for a ground truth was proposed. The model utilizes the redundancy of sensors to learn the sensor’s perception reliability. The method was tested with simulated data.
Journal Article

Simulation and Its Contribution to Evaluate Highly Automated Driving Functions

2019-04-02
2019-01-0140
A key criterion for launching autonomous vehicles on real roads is the knowledge of their capability to ensure traffic safety. In contrast to ADAS, deriving this measure of safety is difficult to achieve as the functional scope of an autonomous driving function exceeds by far the one of ADAS. As a consequence, real-world testing solely is not sufficient enough to cover the required test volume. This assessment problem imposes new requirements on a valid test concept for automated driving. A possible solution represents simulation by enabling it to generate reliable test kilometers. As a first step, we discuss in this paper the feasibility of simulation frameworks to re-simulate a real-world test in certain scenarios. We will demonstrate that even with ground truth information of the vehicle odometry and corresponding environment model an acceptable accordance of functional behavior is not guaranteed.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Technical Paper

Redundant Sensor-Based Perception Sensor Reliability Estimation from Field Tests without Reference Truth

2023-11-08
2023-01-5078
The introduction of autonomous vehicles has gained significant attention due to its potential to revolutionize mobility and safety. A critical aspect underpinning the functionality of these autonomous vehicles is their sensor perception system. Demonstrating the reliability of the environment perception sensors and sensor fusion algorithms is, therefore, a necessary step in the development of automated vehicles. Field tests offer testing conditions that come closest to the environment of an automated vehicle in the future. However, a significant challenge in field tests is to obtain a reference truth of the surrounding environment. Here, we propose a pipeline to assess the sensor reliabilities without the need for a reference truth. The pipeline uses a model to estimate the reliability of redundant sensors. To do this, it relies on a binary representation of the surrounding area, which indicates either the presence or absence of an object.
X