Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

Expanded Accommodation Technique with Application to Maintenance Environment

2011-04-12
2011-01-0521
This paper presents a PC based mathematical and rapid prototyping technique for anthropometric accommodation in a maintenance environment using the principle of simulation based design. The developed technique is capable of analyzing anthropometric data using multivariate (Principal component Analysis) approach to describe the body size variability of any given population. A number of body size representative cases are established which, when used properly within the constraints of the maintenance environments, will ensure the accommodation of a desired percentage of a population. This technique evaluates the percentage accommodation of a given population for the environment using the specific manikin cases as boundary conditions. In the case where any member of a maintenance crew cannot be accommodated, the technique has the capability of informing the designer of the environment why the member(s) is/are not accommodated.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
Technical Paper

Computational Fluid Dynamic Analysis of Air Flow in Node 1 of the International Space Station

2005-07-11
2005-01-2797
Proper design of the air ventilation system is critical to maintaining a healthy environment for the ISS crew. In this study, a computational fluid dynamic model was used to model the air circulation in Node 1 to identify the locations where there are low air velocities under nominal operating conditions and several reduced ventilation flow conditions. The reduced ventilation flow conditions analyzed were loss of cabin air fan, loss of inter-module ventilation from Node 1 to the US Lab, and loss of inter-module ventilation from the airlock to Node 1. For nominal operation of the ventilation system, about 5% of the node had air velocity of between 1 and 5 ft/min and 14% of the node had air velocity of between 5 and 10 ft/min. Loss of the cabin air fan and loss of Lab inter-module ventilation did not have a significant impact on the percentage of the node that would have low air circulation.
Technical Paper

Human Swept Volumes

2004-06-15
2004-01-2190
The Human Swept Volume (HSV) software described here is an interactive tool that allows users to position and animate articulated human models and then generate tessellated swept volume solids. Inverse kinematics and keyframe interpolation are used to define motion sequences, and a voxel-based method is used to create swept volume solid models. The software has been designed to accept various human anthropometry models, which can be imported from other CAD tools. For our initial implementation, we defined several human models based on dimensions from CAESAR/SAE anthropometric data. A case study is described in which the swept volume software was used as a part of a human space occupancy analysis. Results show the advantages of using complete swept volumes for objective measurement comparisons.
X