Refine Your Search

Topic

Search Results

Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Self-Configuring Hybrid Duct System and Attachment Technologies for Environmental Control Systems

2009-11-10
2009-01-3277
Environmental Control Systems (ECS) ducts on airplanes are primarily fabricated from aluminum or thermoset composites, depending on temperature and pressure requirements. It is imperative to fabricate lightweight, cost effective, durable, and repairable systems with minimal tooling. It is also important that the duct systems are easy to assemble even with alignment issues resulting from structural variations, tolerance accumulation, variation from thermal expansion of different materials, and inherent duct stiffness. These requirements create an opportunity and need for a technology that can address all of these issues, while increasing performance at the same time. This report provides a background on current ECS ducting systems.
Journal Article

Shielding Effectiveness of Sodium Alanate and Ammonia Borane for Galactic Cosmic Ray and Solar Energetic Particle Event Environments

2008-06-29
2008-01-2163
Estimates of the effectiveness of the high-hydrogen containing materials, sodium alanate and ammonia borane, are made by calculating dose and dose equivalent for the 1977 solar minimum and 1970 solar maximum galactic cosmic ray spectra and for the large solar particle event spectra from the space era event of August 1972 and comparing their shielding effectiveness with that of polyethylene.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Friction Stir Welding-A Revolutionary New Joining Method

1998-09-15
982149
Friction Stir Welding (FSW) can achieve high quality welds in aluminum alloys that are of interest to the aerospace industry (e.g. alloys 2014, 2219, 7050 and numerous aluminum-lithium alloys). The low distortion solid-phase welds exhibit metallurgical and mechanical properties, including fatigue, which are superior to conventional fusion welds achieved by arc processes. FSW, although a relatively new welding technique, has been systematically developed and proved by The Welding Institute (TWI) under contract to an international group of sponsors, one of which is The Boeing Company. To further validate the process, The Boeing Company conducted separate development activities including detailed mechanical testing of welds made from the FSW process.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

Experimental Study of Hole Quality in Drilling of Titanium Alloy (6AL-4V)

2002-04-16
2002-01-1517
This paper presents the experimental study of hole quality parameters in the drilling of titanium alloy (6Al-4V). Titanium alloy plates were drilled dry using three types of solid carbide drills i.e. 2-flute helical twist drill, straight flute and three-flute drill. The objective was to study the effects of process parameters like feed rate, speed and drill bit geometry on the hole quality features. Typical hole quality features in a drilling process are the hole quality measures such as surface roughness, hole diameter, hole roundness and burr height. The results indicate that proper selection of speed, feed rate, and drill geometry can optimize metal removal rate and hole quality.
Technical Paper

Assessment of Lithium Hydroxide Conservation Via International Space Station Control of Orbiter Carbon Dioxide

2002-07-15
2002-01-2271
In order to conserve mass and volume, it was proposed that the International Space Station (ISS) control the level of carbon dioxide (CO2) in the Space Shuttle Orbiter while the Orbiter is docked to the ISS. If successful, this would greatly reduce the number of lithium hydroxide (LiOH) canisters required for each ISS-related Orbiter mission. Because of the impact on the Orbiter Environmental Control and Life Support Subsystem (ECLSS), as well as on the Orbiter flight manifest, a Space Shuttle Program (SSP) analysis was necessary. STS-108 (ISS UF1) pre-flight analysis using the Personal Computer Thermal Analyzer Program (PCTAP) predicted that the ISS would be able to control the level of CO2 in the Orbiter (and throughout the stack) under nominal conditions with no supplemental LiOH required. This analysis assumed that the Carbon Dioxide Removal Assembly (CDRA) located in the U.S.
Technical Paper

Ejection Seat Cushions Static Evaluation for Three Different Installation Rail Angles

2011-04-12
2011-01-0806
Jet fighter missions have been known to last extended period of time. The need for a comfortable and safe seat has become paramount considering that fact that uncomfortable seats can lead to numerous health issues. Several health effects like numbness, pressure sore, low back pain, and vein thrombosis have been associated with protracted sitting. The cushion, and of late the installation rail angle are the only components of the ejection seat system that can be modified to reduce these adverse effects. A comprehensive static comfort evaluation study for ejection seats was conducted. It provides comparison between a variety of operational and prototype cushions (baseline cushion, honeycomb and air-cushion) and three different installation rail angles (14°, 18°, and 22°). Three operational cockpit environment mockups with adjustable installation rail angle were built. Ten volunteer subjects, six females and four males, ages 19 to 35, participated in the seat comfort evaluation.
Technical Paper

Analysis to Characterize Fresh vs. Aged Shuttle Orbiter Lithium Hydroxide Performance

2006-07-17
2006-01-2048
A recent endeavor has been undertaken to understand the performance of Shuttle Orbiter lithium hydroxide (LiOH) canisters used during STS-114. During this mission, the crew relied on both fresh LiOH and aged LiOH stored on the International Space Station (ISS). Due to the Space Shuttle being grounded after the Columbia accident, the canisters stored on ISS had passed the certified two-year shelf life and were considered expired. The focus of the analysis was to determine the performance of expired LiOH in relation to fresh LiOH and the accuracy of previous predictions1 regarding the performance of expired LiOH. Understanding the performance of expired LiOH is crucial in enabling the extension of the useful life of LiOH canisters. Extending the shelf life has ramifications not only in the current Shuttle program, but in regard to future exploration missions fulfilling the Vision for Space Exploration as well.
Technical Paper

The Personal Computer Transport Analyzer Program

2006-07-17
2006-01-2050
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
Technical Paper

Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance

2005-07-11
2005-01-2768
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
Technical Paper

International Space Station Mobile Dosimetry Unit: A Comparison of Flight Measurements With Model Calculations

2004-07-19
2004-01-2277
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 Mobile Dosimetry Units (MDU) during 2001. The Liulin-E094 was part of the Dosimetric Mapping experiment lead by Dr. G. Reitz, DLR. Four MDUs were placed at fixed locations: one unit in the ISS “Unity” Node-1 and three units were located in the US Laboratory module. Space radiation flight measurements were obtained during the time period May 11 – July 26, 2001. In this paper we discuss the development of an MDU shielding model using combinatorial geometry and 3-D visualization and the orientation and placement at the four locations within the ISS. Four shielding distributions were generated for the combined ISS and MDU shielding models. The AP8MAX trapped proton model was used to compute the daily absorbed dose for the four MDUs and are compared with the flight measurements.
Technical Paper

Depth Dose Exposures in the Magnetosphere of Jupiter at the Icy Moons: Callisto, Ganymede, and Europa

2004-07-19
2004-01-2326
The highly successful Galileo mission made a number of startling and remarkable discoveries during its eight-year tour in the harsh Jupiter radiation environment. Two of these revelations were: 1) salty oceans lying under an icy crust of the Galilean moons: Europa, Ganymede and Callisto, and 2) the possible existence or remnants of life, especially on Europa, which has a very tenuous atmosphere of oxygen. Galileo radiation measurement data from the Energetic Particle Detector (EPD) have been used (Garrett et al., 2003) to update the trapped electron environment model, GIRE: Galileo Interim Radiation Environment, in the range of L (L: McIlwain parameter – see ref. 6) = 8–16 Rj (Rj: radius of Jupiter ≈ 71,400 km) with plans to extend the model for both electrons and protons as more data are reduced and analyzed.
Technical Paper

Integrated Ceramic Composite Firewall

2005-10-03
2005-01-3430
This white paper will outline the material and processes, which have been developed for the fabrication and application of an integrated composite firewall primary structure for use in military and commercial aircraft. Military and commercial aircraft have requirements to protect occupants from fire. One specific fire protection requirement is to contain a (1100°C/2000°F) flame for 15 minutes. This protection on composites is usually provided by a metallic firewall attached to the composite structure. The integrated ceramic composite firewall is an improvement over existing metallic firewall technology. This technology reduces cost, part count, weight, and manufacturing complexity of composites, which require fire protection. The integrated ceramic composite firewall material and process incorporates ceramic fabric and film adhesive into one unique material.
Technical Paper

Machining-Induced Residual Stress and Distortion

2005-10-03
2005-01-3317
Distortion and buckling of aluminum aerospace components can be caused by machining-induced residual stress or by residual stress induced earlier in material processing. This stress is characterized through layer removal experiments and measurements of surface location. This stress is correlated to two machining process parameters, which can be changed, in order to control distortion and buckling of machined metallic components. Experiments are presented which compare distortion of thin machined parts to distortion of chemically milled parts in order to uncouple material bulk stress from machining-induced stress.
X