Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Commercial Aircraft Applications for Laser Sintered Polyamides

2009-11-10
2009-01-3266
The Selective laser sintering (SLS) process offers unique capabilities for production of complex, thin-walled geometries with internal features, integral attachments and flanges. The benefits of SLS have been realized on a variety of Boeing military platforms for a number of years. However, applications on commercial aircraft have been limited by material flammability requirements. To address this gap, Boeing, in cooperation with Advanced Laser Materials, developed a flame retardant polyamide material that is now commercially available (ALM FR-106). This paper introduces the general advantages of laser sintering as applied to the manufacturing of flight hardware and a description of the development of the flame retardant material in use.
Technical Paper

Liquid Propulsion Turbomachinery Model Testing

1992-04-01
921029
For the past few years an extensive experimental program to understand the fluid dynamics of the Space Shuttle Main Engine hot gas manifold has been in progress at Marshall Space Flight Center (MSFC). This program includes models of the Phase II and II+ manifolds for each of the air and water flow facilities, as well as two different turbine flow paths and two simulated power levels for each manifold. All models are full scale (geometric). The water models are constructed partially of acrylic to allow flow visualization. The intent of this paper is to discuss the concept, including the test objectives, the facilities, and the models, and to summarize the data for an example configuration, including static pressure data, flow visualization, and the solution of a specific flow problem.
Technical Paper

Hubble Space Telescope Solar Cell Module Thermal Cycle Test

1992-08-03
929243
The Hubble space telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low-Earth orbit (LEO) thermal cycles between approximately +100 and -100 °C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules.
Technical Paper

Hubble Space Telescope Nickel-Hydrogen Battery and Cell Testing - An Update

1992-08-03
929089
Nickel-hydrogen (Ni-H2) technology has only recently been utilized in low earth orbit (LEO) applications. The Hubble Space Telescope (HST) program, over the past five years, played a key role in developing this application. The HST not only became the first reported, nonexperimental program to fly Ni-H2 batteries in a LEO application, but funded numerous, ongoing tests that served to validate this usage. The Marshall Space Flight Center (MSFC) has been testing HST Ni-H2 batteries and cells for over three years. The major tests include a 6-battery system (SBS) test and a single 22-cell battery (FSB) test. The SBS test has been operating for 34 months and completed approximately 15,200 cycles. The performance of the cells and batteries in this test is nominal. Currently, the batteries are operating at an average end-of-charge (EOC) pressure that indicates an average capacity of approximately 79 ampere-hours (Ah).
Technical Paper

Advanced Fiber-Optic Monitoring System for Space-flight Applications

2005-07-11
2005-01-2877
Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration's Marshall Space Flight Center (NASA MSFC) are developing an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.
Technical Paper

International Space Station Mobile Dosimetry Unit: A Comparison of Flight Measurements With Model Calculations

2004-07-19
2004-01-2277
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 Mobile Dosimetry Units (MDU) during 2001. The Liulin-E094 was part of the Dosimetric Mapping experiment lead by Dr. G. Reitz, DLR. Four MDUs were placed at fixed locations: one unit in the ISS “Unity” Node-1 and three units were located in the US Laboratory module. Space radiation flight measurements were obtained during the time period May 11 – July 26, 2001. In this paper we discuss the development of an MDU shielding model using combinatorial geometry and 3-D visualization and the orientation and placement at the four locations within the ISS. Four shielding distributions were generated for the combined ISS and MDU shielding models. The AP8MAX trapped proton model was used to compute the daily absorbed dose for the four MDUs and are compared with the flight measurements.
X