Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

An ATV Model for CarSim

2018-04-03
2018-01-0573
This paper presents the development of a CarSim model of an All-Terrain Vehicle (ATV) that can be used to predict the handling and stability characteristic of the vehicle. The inertia and suspension characteristics of a subject ATV are measured and a model of the ATV is built in CarSim based on the measurements. A simplified suspension model is developed to convert the suspension compliance measurements into parameters suitable to a CarSim model. Procedures used to apply vehicle mass, inertia and suspension kinematics data in CarSim are also shown. The model is evaluated using predictions of vehicle response during a constant radius circle test. The simulation results of the maneuver are compared with the field test results shown in a recent CPSC report on ATV’s. Similar cornering characteristics are found in both results. Modifications are made to the model to study how changes to the ATV affect performance.
X