Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Crank-Angle Resolved Imaging of Fuel Distribution, Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

2005-10-24
2005-01-3753
A combination of imaging techniques for investigations of highly transient processes and cyclic variations in internal combustion engines is presented. The single high-speed camera setup uses a CMOS camera combined with a two-stage image-intensifier and two excimer lasers. Fuel mixing, ignition and combustion were monitored via planar laser induced fluorescence imaging of toluene as a tracer that was added to iso-octane in combination with the simultaneous recording of light emission from the spark plasma and OH* chemiluminescence of the developing flame. Image frame rates of 12 kHz for hundreds of cycles were achieved. Application to misfire events in a spray-guided gasoline direct-injection engine is described to illustrate the merits of the technique.
Technical Paper

Impact of Fluorescence Tracers on Combustion Performance in Optical Engine Experiments

2004-10-25
2004-01-2975
For applications of planar laser induced fluorescence (PLIF) to measure the fuel or equivalence ratio distributions in internal combustion (IC) engines it is typically assumed that the addition of a fluorescence tracer to a base fuel does not alter the combustion performance. We have investigated the impact on combustion performance through the addition of various amounts of 3-pentanone or toluene to iso-octane fuel. Correlations between equivalence ratio for a range of fuel/tracer mixtures and engine parameters, like peak pressure, location of peak pressure, indicated mean effective pressure (IMEP), and peak burn rate are discussed for data obtained in a spark-ignition direct-injection (SIDI) gasoline engine operated with near homogeneous charge. For typical tracer concentrations the impact on combustion performance is mostly negligible.
X