Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Analysis of the Steady-State Scavenging Flow Characteristics of a Two-Stroke Marine Engine

The scavenging process in two-stroke marine engines not only transports burnt gas out of the cylinder but also provides fresh air for the next cycle, thereby significantly affecting the engine performance. In order to enhance fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability directly determines the scavenging efficiency and even influences fuel-air mixing, combustion, and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in a steady-state scavenging flow test is conducted. A precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze the reason and the multi-scale characteristics of the precession phenomenon.
Technical Paper

Numerical Analysis of Scavenging Process in a Large Marine Two-Stroke Diesel Engine

For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.